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ABSTRACT Mitigating climate change in soil ecosystems involves complex plant and 
microbial processes regulating carbon pools and flows. Here, we advocate for the use of 
soil microbiome interventions to help increase soil carbon stocks and curb greenhouse 
gas emissions from managed soils. Direct interventions include the introduction of 
microbial strains, consortia, phage, and soil transplants, whereas indirect interventions 
include managing soil conditions or additives to modulate community composition 
or its activities. Approaches to increase soil carbon stocks using microbially catalyzed 
processes include increasing carbon inputs from plants, promoting soil organic matter 
(SOM) formation, and reducing SOM turnover and production of diverse greenhouse 
gases. Marginal or degraded soils may provide the greatest opportunities for enhanc­
ing global soil carbon stocks. Among the many knowledge gaps in this field, crucial 
gaps include the processes influencing the transformation of plant-derived soil carbon 
inputs into SOM and the identity of the microbes and microbial activities impacting 
this transformation. As a critical step forward, we encourage broadening the current 
widespread screening of potentially beneficial soil microorganisms to encompass 
functions relevant to stimulating soil carbon stocks. Moreover, in developing these 
interventions, we must consider the potential ecological ramifications and uncertain­
ties, such as incurred by the widespread introduction of homogenous inoculants and 
consortia, and the need for site-specificity given the extreme variation among soil 
habitats. Incentivization and implementation at large spatial scales could effectively 
harness increases in soil carbon stocks, helping to mitigate the impacts of climate 
change.

KEYWORDS microbial communities, climate change, soil organic matter, inoculants, 
soil health, plant growth promotion, soil carbon stocks, soil transplants

C limate change poses one of the greatest challenges of the 21st century, demand­
ing innovative and effective solutions across all sectors of society. Among the 

various strategies, soil microbiome interventions have emerged as a potential strategy 
to mitigate the impacts of climate change (1, 2). The soil microbiome—the ensemble 
of bacteria, fungi, archaea, protists, and viruses, and their activities within a soil habitat—
plays a pivotal role in the health, structure, and fertility of the soil (3–7). Soil micro­
organisms are potent actors in climate-relevant processes via their influence on soil 
carbon turnover and sequestration, along with their consumption and production of 
greenhouse gasses (GHGs) (Fig. 1). Leveraging soil microbial activities to increase soil 
carbon stocks may thus be a promising strategy, but it is not one without challenges. 
Processes in the soil microbiome have complex biogeochemical feedbacks (8), which are 
dependent on geography and history (9), and are inherently linked with plant biodiver­
sity (10). Soil microbiome interventions may be particularly relevant in disturbed sites 
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(11) because they may help replenish soil organic matter (SOM) and reverse the effects 
of soil degradation (12). Promoting soil microbiome stewardship has the potential 
to simultaneously increase soil health, plant productivity and augment soil carbon stocks 
(2). However, if we are to leverage microbial processes to boost soil carbon sequestration 

FIG 1 Soil climate-relevant processes and leverage possibilities for microbiome interventions. Most of the carbon input into soils comes from plant-fixed carbon 

with augmentation by autotrophic microorganisms. Carbon use efficiency determines how much of the carbon inflow is either converted by microbial activity 

to microbial biomass and longer term sequestered carbon, or recycled back to the atmosphere in the form of respiration products (CO2, CH4, and N2O—as 

being a product from organic carbon respiration under anoxic conditions; GHG, greenhouse gases). Three possible areas for soil microbiome intervention: (1) 

plant growth stimulation (more primary carbon input), (2) manage pathways for soil organic matter (SOM) transformations and increase necromass formation—

leading to longer SOM residence times (AMF, arbuscular mycorrhizal fungi), and (3) reduction of greenhouse gas emissions: CO2, CH4, and N2O.
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or curb GHG emissions, we need to accurately identify what is possible in any given 
context, what time-scales are relevant for successful interventions, what fundamen­
tal and practical constraints exist, and where the greatest uncertainties lie.

TARGETS FOR SOIL CARBON MANAGEMENT

Near-term approaches are urgently needed to prevent further increases in, and 
eventually reduce, atmospheric GHG levels and minimize undesirable scenarios 
predicted by climate models. Global soils hold significant potential to mitigate part of 
the GHG off-set in the atmosphere. The soil off-set was estimated at 13.5 ± 2.9 Pg of the 
36.3 Pg global CO2 emissions from fossil fuels and industry in 2023 (for comparison, 10.3 
± 1.5 Pg is being captured by the global ocean; http://globalcarbonatlas.org). Compared 
with the global SOM pool of ca. 1,500 Pg C (in the top 1 m, 130 million km2 soil), this 
seems a small proportion, but standing SOM stocks are outcomes of multiple processes 
of (slow) accrual, turnover and loss, and vary greatly with geography (13, 14). Relatively 
straightforward and rapidly implementable improvements in soil management practices, 
such as reduced tillage, use of cover crops, and erosion control, could help to replenish 
soil carbon stocks by 2–5 Pg (13). Since many soils have lost part of their SOM as 
a result of poor management, as much as 1.8 PgC in additional C removal may be 
achieved annually over the next 20 years with continued SOM sequestration (14, 15). Soil 
microbiome interventions have the potential to enhance this contribution even further 
by altering microbially catalyzed processes to achieve net increases in organic carbon 
stocks in soils (16).

The general concepts of the soil carbon cycle and sinks are well understood (Fig. 1). 
However, there are many unresolved intricacies and feedbacks (17) that limit our capacity 
to rationally design interventions that involve the soil microbiome. First, important 
questions remain about the processes that impact the proportion of plant-derived 
carbon inputs that are converted to SOM versus the amount that is transformed into 
CO2, CH4, or other volatile C-compounds that can escape back into the atmosphere 
(18–20). Second, the precise roles of individual microbial species and guilds and their 
activities and products during the turnover and formation of SOM remain unclear (21–
23). Third, SOM itself is an extremely complex mixture of organic compounds that can 
be protected from microbial decomposition through various chemical, physical, and 
biological processes with distinct efficacies and vulnerabilities (24, 25). Below, we discuss 
some of these knowledge gaps, the potential for addressing them to enable micro­
biome interventions, and how these interventions might be designed based on prior 
experience and insights from other microbiome-related fields. Ultimately, enhancing soil 
carbon stocks through microbiome interventions needs to be part of a broader climate 
strategy that includes both reducing GHG emissions and adopting carbon capture 
technologies, some of which may again involve the soil as a vault for carbon burial 
(26).

AREAS OF INTERVENTION FOR SHIFTING THE SOIL CARBON BALANCE

Given the current understanding of the soil carbon cycle, microbially catalyzed processes 
could be altered to a net increase in carbon stocks or reduction of GHG emissions in 
three ways (Fig. 1): (i) utilize microbes to increase carbon inputs from plants, (ii) promote 
microbially mediated pathways that enhance the formation of SOM and reduce its 
turnover, and (iii) reduce microbial production of GHGs that are more powerful than CO2, 
primarily methane and nitrous oxide (N2O).

Increase the carbon inputs from plants

The major source for carbon input into the soil is through biological carbon fixation 
mediated by plants (8), and further by autotrophic (or mixotrophic) soil bacteria (27). 
Plant inputs consist of litter from above-ground tissues (stem and leaves), decaying roots, 
and mucilage, exudates, and root-associated microbial products collectively referred 
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to as rhizodeposits. In recent years, rhizodeposits have received significant attention 
because they were identified as greater contributors to carbon inputs in many soils 
than above-ground tissues (28). Rhizodeposits provide a major conduit of carbon into 
deeper soils and include sugars, amino acids, and various other organic acids from 
root exudates. These serve as crucial energy and carbon sources to support catabolic 
and anabolic processes of soil microorganisms and shape both root-associated bacterial 
and fungal communities (29, 30). Exudates promote growth of microbial biomass, the 
dead remains of which can contribute to SOM formation and thereby increase soil 
carbon stocks (31). However, root carbon inputs in general, and exudates in particular, 
can undermine carbon stocks by stimulating microbial activity and associated SOM 
decomposition (the so-called “priming” effect), returning carbon to the atmosphere in 
form of CO2, CH4, or other volatile C compounds (32).

Microbiome interventions to increase plant inputs could be integrated with existing 
agronomic approaches, including cover crops and crop rotations to increase carbon 
stocks in deep soil, and crop breeding for increased root-to-shoot biomass, rooting depth 
(33), or root surface area (34). For example, recent plant breeding advances show that it 
is possible to stimulate the production of compounds like suberin, which generally have 
long residence times in the soil (35), suggesting the possibility of intentionally modu­
lating root compounds to alter the composition of root-associated microorganisms. A 
direct microbiome intervention would be the application of microbial inoculants to 
stimulate plant growth or combat disease. For example, arbuscular mycorrhizal fungi 
(AMF) inoculants can promote plant root growth and increase soil carbon stocks (36, 
37). Similarly, bacterial inoculants can enhance plant-derived carbon inputs into the 
soil and can do this without counter-productive increases in microbial respiration (38). 
Strain inoculation can also affect the C:N ratio in plant tissue (38), or influence soil 
nitrogen transformations, with potential secondary effects on soil carbon metabolism 
(39). Moreover, the application of plant growth-promoting microorganisms has also been 
shown to change the composition and the quantity of root exudates (40–42).

Many aspects of microbial metabolism of root exudates remain poorly under­
stood. Elucidating the mechanisms by which plant growth-promoting microorganisms 
influence both root exudation and the metabolic activities of the soil microbial 
community is challenging due to the confounding impacts of plant root exudation 
and microbial metabolism on the exudate metabolome and to technical limitations 
in quantitative exudate chemistry (43). Additional unresolved questions include which 
microbial species are most relevant to the formation and decomposition of SOM, and 
how these species impact plant carbon inputs and alter rhizodeposition. Also, how 
do changes in C:N availability influence microbial decomposition rates and thus litter 
persistence in the soil, and how this is depending on the type of plant cover (44). If and 
how microbial metabolism of root exudates impacts soil carbon stocks in the long term 
remain largely unknown.

Managing pathways to soil organic matter (SOM) turnover

A variety of processes contributes to long-term storage of the carbon contained in SOM. 
Recent models of the soil carbon cycle suggest that microbial carbon use efficiency 
(CUE, the ratio between biomass carbon gain and carbon loss by respiration) is a critical 
variable, with higher microbial CUE positively correlating with higher SOM levels (23). 
CUE is thus linked to SOM accumulation and designing interventions that favor microbial 
biomass growth rather than microbial respiration (i.e., increase the CUE) could thus 
represent a viable path for increasing soil carbon stocks. An example would be to 
reduce accessibility to external electron acceptors, favoring slow-growing bacteria or 
fermentative pathways. SOM is, however, complex and composed of different opera­
tional or functional pools: dissolved organic matter (DOM), particulate organic matter 
(POM), or mineral-associated organic matter (MAOM) (45). DOM contains soluble and 
relatively low-molecular-weight compounds that are in principle accessible for microbial 
uptake and metabolism. POM consists of plant and microbial tissues (e.g., cell walls 
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and membranes) that have been fragmented and can be either free or trapped in 
soil aggregates and tend to have residence times of years to decades (46). MAOM 
consists of microbially transformed plant litter (19), dead microbial cells (necromass), or 
microbial breakdown products that are chemically bound to soil minerals (19, 47). These 
chemical associations render carbon compounds contained within MAOM inaccessible 
to microbes and their enzymes, resulting in residence times of hundreds to thousands 
of years (48–50). Other studies propose that decomposition rates should be consid­
ered from a spatiotemporal perspective, as they are influencedd by the probability of 
contact between microbes or their excreted enzymes and SOM (or MAOM), the chemical 
compound diversity and the metabolic investments by microbes (51).

In addition to promoting microbial biomass in soil through microbial growth, recent 
attention has focused on promoting the accumulation of microbial necromass, as this 
can contribute to persistent SOM (21, 52, 53). Microbial necromass includes dead 
cell residues, extracellular polymeric substances, and other microbial exo-metabolites 
(54). Microbial necromass may become inaccessible for metabolic transformation or 
respiration by other microorganisms because the cells are trapped inside soil pores 
or bound to mineral surfaces (55). Indeed, most microbial necromass appears to be 
found in MAOM (19), and this necromass is known to be a quantitatively important 
contributor to persistent SOM (24). Distinct cell death pathways may be responsible 
for differences in the composition and reactivity of the microbial necromass (21). For 
example, senescence, predation, and environmental stress lead to distinct chemical 
transformations that increase the cell wall-to-cytosol ratios, reduce nutrient contents, 
and deplete easily degradable compounds. These transformations result in microbial 
necromass that does not merely reflect the composition of living microbial biomass 
but represents a chemically altered state that contributes differently to SOM persistence 
(21). On the other hand, we know too little about actual growth, activity, and death of 
microbes in soils (56). Soil microorganisms are characterized by both rapid opportunistic 
as well as slow growers. High death rates, predation, infection, and persistence are all 
parts of evolved ecological strategies of individual microbial species and viruses/phages 
(57, 58). To turn necromass formation into a precision microbial intervention tool, we 
need to obtain a much clearer understanding of the intricacies of natural growth and 
death cycles in complex communities, and how these may be influenced by climate 
change (59).

Another approach that can enhance SOM formation is to encourage the production 
of microbial exopolysaccharides. These are important both as sequestered carbon and 
in the context of soil aggregation (7), as they help form micro-aggregates that more 
stably retain sequestered carbon (25). Microbial exopolymers are also important in the 
development of desert soil biocrusts (60), which stabilize soils and reduce erosion. 
AMF inoculants are of interest as they excrete glomalin, a protein known to promote 
MAOM and aggregate formation (61, 62). However, recent evaluations of AMF inoculants 
highlight the need for quality standards in the inoculant industry to fully realize the 
benefits provided by these microbes (63). Composting (64) could also be envisioned as 
process to control the conditions that favor biomass or necromass accumulation, and 
potentially enrich for refractory SOM while reducing GHG emissions. Compost material 
can subsequently be used to enrich soils for SOM, which is particularly beneficial for 
degraded soils (65).

Reduce pathways of microbial turnover that lead to GHG emissions

Microbial respiration is a general process leading to turnover of soil carbon to microbial 
biomass, byproducts, and gaseous end-products. A portion of the carbon input into soil 
is therefore released in the form of respiratory end-products, such as CO2 or methane 
(CH4). In addition, anaerobic carbon respiration leads to the formation of nitrous oxide 
(N2O) when nitrate or nitrite is used as a final electron acceptor. Given that N2O and 
CH4 are GHGs even more potent than CO2, though more short-lived, soil microbiome 
interventions targeting climate change mitigation should also aim to minimize their 
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emissions. Depending on the context, this might be achieved by directly targeting 
microbial denitrification as well as methane oxidation and formation pathways, although 
few studies have attempted this. Sites with high CH4 emissions may benefit from 
strategies that favor methanotrophic bacteria, which consume CH4, or by outcompeting 
methanogenic archaea for substrate. As an example, drawing inspiration from natural 
processes observed in stratified lakes, inoculating with “cable” bacteria in rice-paddy 
soil microcosms stimulated the activity of sulfate-reducing bacteria, which effectively 
competed with methanogens for hydrogen and acetate, thereby reducing CH4 emissions 
(66). Recently, successfully tested ideas to reduce N2O emissions consisted of increasing 
the transformation rates of N2O to N2 by introducing specific nitrous oxide reducers 
into the soil, or by stimulating expression of the key catalytic enzyme, nitrous oxide 
reductase (NosZ), in resident denitrifiers (67–69). Because the activity of NosZ reductases 
in denitrifying bacteria often hinges on the availability of key nutrients, such as copper 
and vitamin B12 (70), the enhancement of these nutrients in targeted soils could be 
transformative components of bio-stimulation and bioinoculant interventions.

SOIL MICROBIOME INTERVENTIONS AND THEIR CHALLENGES

The processes and mechanisms listed above could potentially be deployable for 
redirecting soil microbial and ecological processes to a net increase in carbon stocks. 
However, how might this be achieved through soil microbiome management? Micro­
biome interventions in general have been defined as any method used to manage, alter, 
restore, rehabilitate, or engineer microbial community composition and its functional 
activity, promoting its stewardship (12, 71). These can take the form of direct interven­
tions, such as introducing, inhibiting, or removing specific bacterial strains or consortia 
(72), applying phage (73), or introducing diverse taxa through soil transplants (74). 
They can also take the form of indirect interventions, such as managing the boundary 
conditions of the soil habitat to favor or suppress specific microbial-catalyzed processes. 
In the context of soil carbon management, microbiome interventions can be envisioned 
in each of the three domains defined above (Fig. 1), to enhance the ability of the soil 
to capture and store carbon and influence the microbial processes that regulate GHG 
emissions. The choice for where and how to intervene will depend on the soil and 
environmental context and the state or composition of the resident soil microbiota. 
Although few soil microbiome interventions have been specifically targeting soil carbon 
management to date (72), we can draw valuable insights from previous experiences and 
challenges encountered in other environmental, agricultural and human health contexts.

Microbial inoculants have long been used in agriculture and soil management. In 
the context of soil microbiome interventions, the use of inoculants can be described as 
the functional equivalent of human or animal probiotics (75). The intent of inoculants 
has been to enhance beneficial microbial-driven processes, such as nitrogen-fixation 
and plant growth promotion for crop production (76–79), grassland management (80), 
reforestation (81), xenobiotic compound degradation (82, 83), and inhibition of plant 
pests (84) and pathogens (85). The direct application of nitrogen-fixing rhizobia to 
leguminous plants has been practiced for more than 100 years (86), and since then, a 
wide range of microbial species have been deployed as soil inoculants (87). Mycorrhizal 
fungal inoculants are also widely used as biofertilizers and for restoring degraded or 
nutrient-poor soils (88). Meta-analyses of microbial inoculant studies indicate an overall 
positive effect on crop yields, with alleviation of abiotic stress, the use of native strains, 
and higher initial nutrient levels as the main contributing factors (89, 90). Still, the 
efficacy of many inoculants is highly variable (63, 90, 91), and we are only beginning 
to understand the ecological processes underlying the outcomes of these interventions 
(83).

One of the major general challenges in reshaping the soil microbiota is its enormous 
biomass and its high functional and taxonomic diversity (24). This complexity ensures 
a high level of functional redundancy, which results in the occupation of most nutri­
tional and spatial niches in typical soil habitats (3, 92). Consequently, newly introduced 
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microbial inoculants often fail to proliferate and persist, or to trigger microbiome 
responses (76, 83). The challenge to establishing an inoculant within a soil microbiome 
mirrors that for microbes consumed as probiotics in the human and animal intestinal 
tract, highlighting a phenomenon known as colonization resistance (93, 94). Moreover, 
recent studies have indicated that soil bacterial inoculants may leak metabolites during 
growth that inadvertently facilitate the proliferation of native soil microorganisms, thus 
disfavoring the inoculant via increased competitive pressure (83). Inoculants therefore 
must be carefully selected by evaluating both their proliferation potential and their 
interaction with, and potential impact on, the growth of other soil microbes. Also, 
selective carbon or nutrient niches could be engineered for inoculants to proliferate, 
persist and/or carry out their intended functions (72, 83, 95, 96).

Soil inoculants may not need to permanently establish in a community to provide 
benefits. Their transient presence or renewed introduction may be sufficient to affect 
an intended functionality, as observed with host-associated probiotics (75). For example, 
the presence of an inoculant on a seed during germination may be sufficient to allow 
root colonization and induce sustained plant growth benefits (97), alleviate environmen­
tal stress on plants, and improve plant nutrient quality (89). The biological significance of 
microbes to seed germination, seed health, and subsequent plant growth, coupled with 
the ease of introducing inoculants via seeds, has made seed coatings a common delivery 
mechanism for inoculants (98). On the other hand, even transiently present microbial 
inoculants can cause sustained shifts in the resident microbiota composition (99, 100), 
alter the complexity and network stability of the soil microbiome (90), and decrease 
nutritional niche breadth (101).

Rather than inoculants comprising individual or mixtures of cultured isolates, 
inoculants can take the form of microbiome transplants. Transplants have received 
heightened interest in soils as well as in host-associated microbiomes. Transplants may 
allow a poorly performing community to be seeded with a more diverse or better-per­
forming community, which may recolonize and effectively “reset” the microbiome in 
the system (74). This approach parallels that of gut microbiome interventions in which 
fecal transplants from healthy donors are used to reset dysbiotic intestinal communities 
in patients suffering from recurrent infection with Clostridiodes difficile and/or from 
prolonged use of antibiotics (102, 103). One important difference, though, is that 
the colonization by fecal transplants is facilitated by emptying the intestine of most 
of its microbial content, whereas this cannot be done in the case of soils and soil 
transplants. Nevertheless, soil transplants, with or without isolation or enrichment for 
microbes with target functions, could potentially reset dysfunctional soil microbiomes 
or reconstruct microbiomes in soils with extremely impoverished microbiota (74, 104). 
Carefully controlled experiments will be essential to better understand the ecological 
processes driving the outcomes of soil transplants. This understanding will be critical 
for predicting their potential to restore degraded sites, given that such predictions are 
challenged by the extreme variability in soil habitats and the complexity of soil biological 
and chemical conditions.

OPPORTUNITIES TO LEVERAGE EXISTING MICROBIOME INTERVENTIONS TO 
ENHANCE SOIL CARBON STORAGE

How do we transform conceptual but sparse information on soil microbiome interven­
tions into practical methods for significantly increasing soil carbon stocks at the global 
scale? At present, microbial inoculants or transplants are primarily used to promote plant 
productivity in croplands, grasslands, and forests, regenerate impoverished soils, and 
restore soil ecosystems. However, the impact of such interventions on soil carbon stocks 
is rarely monitored or even considered. We recommend refining these inoculants and 
transplant applications to simultaneously address the three broad microbial processes 
controlling soil carbon stocks (Fig. 1).

The same microbial inoculants used to promote plant productivity could indirectly 
stimulate soil carbon stocks by providing greater carbon inputs (101). Microbial 

Minireview mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.01129-24 7

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 1

8 
D

ec
em

be
r 

20
24

 b
y 

12
9.

79
.2

33
.2

27
.

https://doi.org/10.1128/msystems.01129-24


inoculants, including AMF, can significantly improve plant growth in large-scale 
agriculture applications (36, 37, 105). A wealth of knowledge and experience has 
accumulated regarding the use of microbial inoculants to enhance plant productivity. 
For example, the optimal timing of inoculation for colonization success and functional 
outcomes, the influence of abiotic factors on inoculant physiology in the soil, and the 
effects of seasonal variation and agricultural practices have been characterized for many 
inoculants (106). Whereas many commercially available microbial inoculants contain 
generalist species found in most soil types (107), inoculant functions may be optimized 
with a better understanding of site- and plant host-specific effects (108, 109). Knowl­
edge of the resident microbial community and expected microbe–microbe interactions 
might help guide appropriate introduced inoculant mixtures to avoid unproductive 
competition (83). Soil management practices may further help to overcome potential 
negative effects of abiotic factors, such as non-optimal pH, low moisture content, toxic 
compounds, or nutrient imbalances on inoculant effectiveness and long-term inoculant 
survival (110, 111).

The greatest opportunity for enhancing soil carbon stocks may be realized in 
marginal or degraded soils. The application of AMF is widely known to improve plant 
water and nutrient uptake in marginal soils, leading to increased biomass production 
and higher SOM content (36, 37, 112). However, soils can also be inoculated with 
diverse, native soil communities, such as via soil transplants, spores recovered from 
soils, or soil microorganisms that are recovered and regrown (113). Such native soil 
community-based inoculants were shown to increase ecosystem recovery by an average 
of 64% across the globe, translating directly to increases in primary production and 
soil carbon stocks (114). Using native species or transplants from nearby local environ­
ments for microbial inoculations may help to avoid the possibly damaging impacts of 
invasive species, maximize the beneficial impacts on ecological recovery, and translate 
to particularly effective microbiome interventions (101). Such procedures should be 
carefully considered, however, in order to minimize damage to the local environment 
from which the source soils are collected. Moreover, although regulations for the release 
of native species vary among countries, best practices and a unified, science-based and 
flexible framework for microbiome stewardship, as recently proposed for soil interven­
tions such as transplants (12), are critical to minimize these risks.

UNKNOWN ECOLOGICAL RAMIFICATIONS OF MICROBIOME INTERVENTIONS

The use of microbiome interventions holds promise despite possibilities that many 
inoculants may fail to establish, survive, or function effectively following introduction 
into a new environment (83, 115). Similarly, although microbial inoculants and trans­
plants may offer the greatest benefits to plant growth, soil health, and soil carbon 
storage in marginal or degraded soils, their successful establishment may be particularly 
precarious in these soils because of low fertility, poor physical structure, or extreme 
pH (116, 117) and may require simultaneous optimization of soil conditions, such as 
through amendments and other management tools. Successful inoculant deployment in 
any soil may be further altered by unpredictable weather events or the effects of land 
management practices, such as the application of pesticides and fertilizers, tillage and 
cover crops, or poor and poorly documented product viability (63). Collectively, these are 
manageable risks that can be studied in specific experimental setups, customized and 
tested at the pilot scale, and therefore optimized. However, the ecological ramifications 
of the targeted as well as widespread introduction of microbes into soils are largely 
unknown. Here, we highlight two such concerns.

First, introduced strains that overcome the challenge of competing with native 
microorganisms and establish in a soil may have negative impacts (118). These impacts 
include triggering the growth, activity, or altered behavior of native pathogens or 
parasites, or presenting an invasion threat due to unintended traits or functions (105). 
Over time, microbiome interventions could create new selective pressures that drive 
species evolution and ecological succession, potentially offsetting the intended benefits 
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of the original inoculum or inducing the loss of beneficial ecosystem services (118). 
For example, a widespread introduction of a single synthetic consortium could lead to 
a regional loss of diversity, critical functional redundancies, and potential community 
resilience. Increasing our understanding of when a native microbial community is likely 
to be outcompeted or displaced by an introduced synthetic consortium is critical for 
anticipating, predicting, and ideally mitigating any potential long-term negative impacts 
of these microbiome interventions. These impacts may also be minimized by using 
restoration-based interventions that prioritize native microbial species or transplants 
(12).

Second, interventions in soil microbial processes may have unforeseen adverse effects 
due to our limited understanding of the mechanisms and pathways that govern and 
influence SOM turnover (Fig. 1). For example, we have only recently gained insights into 
a major microbial component of SOM with the finding that, in many soils, a significant 
proportion—up to 60%—of the cellular biomass is inactive or dead, particularly among 
fast-growing organisms (119, 120). How the complex slow dynamics of SOM formation 
are related to the diverse ecological strategies of individual microbial species in soils and 
to the feedbacks of predators on communities is currently unclear (57). Thus, interrupting 
these life-death cycles by inoculating fast-growing strains or stimulating necromass 
formation may have unpredictable impacts on microbial food webs in the soil and the 
residence time of the produced SOM. Again, studies exploring the potential impacts of 
inoculants and inoculant traits, such as changes in growth rates and CUE, on the soil 
metabolic interaction network and SOM formation are critical.

KEY RESEARCH QUESTIONS MOVING FORWARD

Addressing the knowledge gaps in soil microbiome interventions requires a multi-
tiered approach that spans microscale laboratory settings to large-scale field studies. 
At the smallest scale, in vitro experiments offer controlled conditions to investigate 
the basic physiological and genetic responses of soil microbes when interacting with 
other microbes, plants, higher taxa in the soil, and varying abiotic soil conditions. 
These experiments are crucial for understanding the fundamental interactions that may 
influence microbial inoculant activities and their impact on SOM without the complex­
ity of simultaneous exposure to a full range of uncontrolled environmental factors. 
Laboratory microcosm studies should also address the spatial distribution of inoculants 
in soils and in association with soil minerals, as the emergent habitat characteristics 
will dictate community assembly, establishment and interactions with plants, other soil 
microorganisms, and minerals, and ultimately, influence SOM formation and turnover 
(121). Some control may be exerted on inoculant distribution by recruitment to seeds 
and plant root exudates, or by interactions with other microbes, such as along fungi 
(122).

Experiments that scale up to greenhouse trials enable exploitation of a semi-con­
trolled environment where edaphic factors such as moisture, temperature, nutrient 
levels and inoculant carrier can be manipulated, with control over the presence of 
extreme environmental variables. These studies can help refine our understanding of 
how inoculants interact with plants, other microbes, and soil characteristics under 
more realistic conditions. Ultimately, the effectiveness and practicality of microbiome 
interventions must be validated in field pilot trials that expose the inoculants to the 
full spectrum of environmental variability and land management practices. Field trials 
will be crucial to assess inoculant colonization and long-term survival, depth and 
spatial distribution, effects on resident soil microbiota composition, and the ecological 
impact of inoculants across different climatic and soil conditions, representing a key 
risk assessment step for microbiome stewardship (12). They can also provide data on 
how microbiome interventions affect carbon stocks on a landscape scale. In parallel 
to medical cohort studies where thousands of individuals need to be sampled longitu­
dinally to find statistically meaningful correlations between gut or stool microbiome 
changes and treatments, such field studies will involve extensive spatial and temporal 
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sampling, high levels of replication, characterization of intrinsic soil properties, and 
ideally, a standardized approach to facilitate subsequent meta-analysis. Realistically, the 
diversity of plant species (e.g., crops, trees, forage grasses) and the soils and climates 
they grow in are vast compared with a medical cohort, further illustrating the need for 
studies to identify controlling variables that predict the success of specific interventions 
at different sites. Thus, the research community should prioritize studies that offer the 
greatest simultaneous societal benefits, including plant health and productivity, soil 
carbon stock accrual, climate change mitigation, and sustainable ecosystem health.

Novel strategies to optimize inoculant survival and persistence may also be necessary. 
For example, a more detailed understanding of soil–microbe–plant interactions would 
facilitate the use of plants to create selective nutrient niches for inoculant growth 
(76). In addition, priming the soil system with nutrients or other organisms can alter 
nutrient niches and enhance the likelihood of colonization by introduced inoculants 
(123, 124). Inoculation strategies may also need to be tailored to specific soil conditions, 
which may include optimizing inoculation timing, selecting microbial strains suited to 
specific environmental conditions, and integrating microbial inoculants with sustainable 
land management practices. Deepening our knowledge on microbial physiology and 
metabolism during growth and non-growth stages will ultimately enable better design 
and formulation of microbial consortia for soil application. Finally, administering multiple 
inoculant doses, selecting for niche-specific carriers (pre- and symbiotics), and generat­
ing slow-release microbial formulations may help compensate for the inability of some 
inoculants to survive or proliferate in high numbers in the soil.

Knowledge of the biotic and abiotic conditions of the target introduction sites should 
be exploited to identify the optimal microbiome intervention strategy. In addition to 
characterizing the existing soil biodiversity and the nutritional, chemical, and physical 
specificities of that soil, the potential for net carbon storage at the site should be 
evaluated. This involves characterizing soil carbon pools, as well as the composition 
and functional potential of the soil microbiota at the start and during interventions 
(125–127). For example, a productive, stable agricultural soil ecosystem is typically 
rich in organic matter at different decay stages and maintains both taxonomically and 
functionally diverse microorganisms (5), whereas impoverished soils may lack these, and 
these contrasting situations may require different inoculation strategies. Interventions 
in productive systems may be limited to the addition of single inoculants or synthetic 
consortia targeting very specific underlying processes, such as curbing GHG production 
or reducing SOM turnover. In contrast, the absence of a functioning soil microbiome 
in impoverished soils may be a key limiting factor for their ecological recovery (114). 
Here, the use of soil microbiome transplants in conjunction with native pioneer plant 
colonizers could be a first step to rebuild soil SOM and, eventually, foster better plant 
productivity (128, 129).

Crucial for any intervention in soil carbon processes are reliable soil carbon measure­
ments on a wider scale and over time (Fig. 2). Currently, this is typically done through 
destructive sampling, requiring time-consuming and expensive protocols in specialized 
laboratories (130). Consequently, these measurements lack the scalability required for 
both detailed local studies across various spatial and temporal scales and for extensive 
global studies, although international efforts are underway to increase the scale at which 
soils and predicted soil carbon are mapped (e.g., https://esdac.jrc.ec.europa.eu/projects/
lucas). The success of microbiome interventions as a strategy requires that we have the 
measurement tools needed to demonstrate durable SOM formation in real-world field 
conditions, thus highlighting the need to develop reliable, high throughput measure­
ment approaches. Similarly, the success of interventions requires the application of 
emission measurements to ensure that any increases in soil carbon stocks are not offset 
by enhanced emissions of other GHGs. Finally, computational models are essential to 
integrate data from diverse experimental setups to predict the outcomes of microbiome 
interventions under different scenarios. They are also needed to help in designing 
optimized soil management strategies to maximize carbon sequestration.
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CONCLUSIONS

The loss of soil carbon from farming since the dawn of human cultivation is one of the 
many factors contributing to the rise in global GHGs (136). Reversing these losses is an 
important strategy to mitigate the effects of climate change. Given the urgency of this 
problem to society, we cannot afford to wait for a comprehensive understanding before 
acting. Here, we advocate for an expansion of the controlled use of soil microbiome 
interventions to achieve net soil carbon stock accrual without increasing emissions of 
other non-CO2 GHGs, while simultaneously permitting gains in crop production or soil/
plant health.

Many knowledge gaps regarding soil microbiome interventions remain. Filling these 
gaps is particularly challenging due to the diversity of crops, soil types, soil degradation 

FIG 2 How to measure soil carbon stocks. Existing technologies to measure soil carbon stocks on a larger scale and over time have proven to be inaccurate and 

quite limited, as described in the pros and cons sections in the figure. A hybrid measurement approach that includes highly sensitive soil sensor technologies 

could open new opportunities to model soil carbon distribution and permanence with greater accuracy. The development of high-quality measurement and 

modeling approaches are essential to improving the precision and reliability of soil carbon models, ultimately leading to better-informed decisions for soil 

management and carbon sequestration efforts. For soil carbon measurements, the gold standard involves collecting soil cores and obtaining soil organic carbon 

(SOC) values via dry combustion (e.g., reference 131). However, this process is laborious and expensive, making it impractical for large-scale and seasonal 

monitoring. Alternatively, soil carbon can be measured using satellite technologies and machine learning approaches (e.g., reference 132), which can collect 

large amounts of data from remote and inaccessible locations with lower investments compared with conventional methods. However, satellite imaging has its 

limitations. Accurate measurements require the top layer of soil to be dry and free of vegetation, and the atmosphere needs to be cloud-free. Satellites primarily 

capture information from the Earth’s surface or near-surface layers, making it difficult to measure carbon content below the surface accurately. New inventions 

are emerging, such as high-resolution soil carbon sensor technologies that can measure different carbon pools (SIC, SOC, SOM, TC, and carbonous soil minerals) 

as well as other key soil metrics, such as salinity, nitrate, ammonia, pH, bulk density, moisture in near real-time (133–135). Local sensors may thus be able to 

provide valuable time-series data, allowing for more precise modeling when combined with low spatial resolution satellite technologies.
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levels, climate zones, and land management practices used throughout the world; thus, 
an effective one-size-fits-all approach is unlikely. Even within a single soil site, the 
complexities of plant type, soil depth, and water application can impact soil microor­
ganisms and their functions (137). Hence, microbiome intervention strategies must be 
tailored to the specific ecological and climatic conditions of each land management 
setting and rigorously evaluated for their impacts on soil carbon stocks. On the other 
hand, developing good practices and appropriate policies for minimizing risks and 
damage to natural soils by soil microbiome interventions is also needed.

Because we cannot afford to wait for a comprehensive understanding due to the 
urgency of climate change, we must address key uncertainties (inoculation success, 
ecological risks, net soil carbon stock gain) while simultaneously and iteratively 
designing, evaluating, and optimizing microbiome interventions. Furthermore, these 
interventions must be incentivized and adopted at a global scale if soil carbon stock 
increases are to help off-set the atmospheric carbon surplus. Thus, we must strive to 
balance the need for specificity in strategies tailored to specific ecological and climatic 
conditions with the global scale of the change needed. This can be done by leveraging 
diverse experimental designs and systems to identify patterns in the soil–plant–climate 
conditions that are most amenable to manipulating soil functions with specific types of 
microbial inoculants and interventions. Ultimately, the deployment of these microbiome 
interventions should therefore adopt a hybrid framework including a core of common 
therapies that should be tested and applied in a customized and decentralized way 
to address the different environmental conditions across different sites. Here, we have 
identified challenges, opportunities and key knowledge gaps to inform future research 
priorities. Our aim is to advance the effective integration of soil carbon sequestration 
processes into emerging microbiome intervention technologies, thereby exploiting the 
vital role of soils in addressing global carbon cycle imbalances while ensuring sustaina­
ble food security.
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