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Canada, 8Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa
Barbara, CA 93106, USA and 9US Geological Survey, Menlo Park, CA 94025-3561, USA
∗Corresponding author: Department of Biology, Duke University, PO Box 90338, Durham, NC 27708, USA. Tel: +1-919-613-8215; Fax: +1-919-660-7293;
E-mail: raven.bier@gmail.com
One sentence summary: Few publications reported statistically testing microbial community structure-process links; 75% of tested links were
significant, though had few commonalities in which processes or structures were measured and the techniques used.
Editor: Gerard Muyzer

ABSTRACT

A major goal of microbial ecology is to identify links between microbial community structure and microbial processes.
Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies
that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to
manipulations to determine the frequency of structure-process links and whether experimental approaches and
techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies
measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and
process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were
significant and typically used Spearman or Pearson’s correlation analysis (68%). No particular approach for characterizing
structure or processes was more likely to produce significant links. Process responses were detected earlier on average than
responses in structure or both structure and process. Together, our findings suggest that few publications report
statistically testing structure-process links. However, when links are tested for they often occur but share few
commonalities in the processes or structures that were linked and the techniques used for measuring them.
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INTRODUCTION

Microorganisms dominate Earth’s biogeochemistry by virtue
of both their numbers and metabolic capabilities (Falkowski,
Fenchel and DeLong 2008). Modern-day molecular technologies
allow us to identify the myriad microbes that exist, to iden-
tify the genes they carry, and even to determine whether those
genes are being transcribed and translated into functional pro-
teins. What remains an open question is whether all of this in-
formationwill enable us to better understand, predict andmodel
the ecosystem processes thatmicrobes perform (e.g. Carney and
Matson 2005; van der Heijden, Bardgett and van Straalen 2008;
Todd-Brown et al. 2011; Wallenstein and Hall 2011; Petersen et al.
2012; Prosser 2013; Graham et al. 2014).

Microbial and ecosystem ecologists approach the question
above with both optimism and caution. On one hand, our ca-
pacity to extract, amplify and assess microbial nucleic acids and
proteins from environmental samples is staggering and is im-
proving rapidly; we can evaluate the community composition
of microbes present within nearly any environmental sample.
Yet, this technological progress has repeatedly demonstrated
that the phylogenetic identities and metabolic capabilities of
microbes within any environmental sample are far more di-
verse than we had imagined (Prosser 2012) and the variety of
metabolic states (growing, active, dormant, deceased) means
that ‘who is present’ is not a proxy for ‘who is active’ (Jones
and Lennon 2010; Lennon and Jones 2011; Blagodatskaya and
Kuzyakov 2013; Blazewicz et al. 2013). Perhaps even more impor-
tantly, we are increasingly aware that the presence or abundance
of particular organisms, genes or gene transcripts may not be
well connected to the rates with which the associated biochem-
ical reactions are occurring (Schimel and Schaeffer 2012; Rocca
et al. 2015).

Despite these challenges,many recent influential papers and
reports have called for incorporating information about micro-
bial communities into assessments of ecosystem functions and
improvements of ecosystem models (e.g. Moorhead and Sins-
abaugh 2006; Konopka 2009; Allison 2012; Bouskill et al. 2012;
Wieder, Bonan and Allison 2013). Some reports distinctly ac-
knowledge that microbial communities temper the influence of
natural and anthropogenic disturbances on ecosystem function-
ing (e.g. Krause et al. 2014). Others suggest that we continue
exploring how to use microbes for improving mechanistic pre-
dictions of ecosystem processes so that in cases where infor-
mation about microbial communities ‘is’ relevant, we will have
more accurate predictions (e.g. McGuire and Treseder 2010). A
substantial increase in the ease and affordability of acquiring
and analyzing microbial community data has spawned signifi-
cant efforts to study structure-process connections (e.g. Prosser
2012), and we can now examine these connections across spa-
tial, temporal and taxonomic scales (e.g. Walters and Knight
2014). Yet, some researchers continue to challenge the generality
of many studies and encourage us to determine where genetic
and ecosystem studies overlap (e.g. Fuhrman 2009). Is informa-
tion resulting fromour numerous structure-process studies con-
sistently filling a knowledge gap, or is there little return for our
investment (Graham et al. 2014)?

While some studies have identified empirical links between
microbial communities and ecosystem processes (Box 1), this
body of literature is also replete with studies where structure
and process appear uncoupled. Such uncoupling could occur
when the ultimate rate-limiting step is abiotic, such as desorp-
tion of clay-bound organics or the breakup of aggregates and
the release of labile materials; in such cases, the composition of

the decomposer community would be unlikely to visibly influ-
ence the rate at which the materials are processed (Schimel and
Schaeffer 2012). However, uncoupling of structure and process
might occur even when the rate-controlling steps are biotic—
in such cases the lack of a relationship might be due to factors
including microbial dormancy (Jones and Lennon 2010; Lennon
and Jones 2011), horizontal gene transfer (Smets and Barkay
2005), functional redundancy (Allison and Martiny 2008), prior-
ity effects (Fukami et al. 2005) and neutral assembly processes
(Nemergut et al. 2013, Nemergut, Shade and Violle 2014). When
links do occur, the success of identifying them is also likely de-
pendent on the conditions and techniques used in each study
(e.g. Shade et al. 2012a), or the time-scale over which measure-
ments occur. Yet, it is not clear how often and with which
techniques researchers have identified explicit links between
microbial community structure and process, and examining the
differences between such studies could guide the direction of
future studies.

Box 1 | Term Definitions
Microbial Community Structure: the characteristics of a
community of microorganisms including bacteria, archaea
and microeukaryotes as measured by any metric of taxa or
gene composition, diversity and/or abundance via a range
of molecular or cultural techniques.
Microbial Process: microbial activity measured at the com-
munity scale, either through direct assessment of en-
zyme activities that mediate a process (e.g. denitrifica-
tion enzyme assay), monitoring of end product accumu-
lation over time (e.g. net nitrification) or tracking element
cycles through stable isotope tracers (e.g. gross nitrifica-
tion/denitrification).

In this paper, we seek to describe the state of recent ef-
forts to characterize microbial community structure and func-
tion relationships. We focused this literature synthesis on ma-
nipulative experiments because such studies may offer the best
opportunity to establish a link between changes in both micro-
bial identity and microbial processes in response to a known
(and controlled) experimental driver. We evaluate the frequency
with which authors of recent publications (2009–13) have simul-
taneously investigated microbial community structure and mi-
crobial process responses to an experimental manipulation and
the time that lapsed before they detected changes in structure,
process or both structure and process. To guide our evaluation,
we focus on five questions: (1) How frequently do publications
report that an experimental manipulation leads to changes in
either microbial community structure or microbially mediated
ecosystem processes? (2) How often do researchers measure
simultaneous changes in both microbial community structure
and process? (3) Are particular experimental conditions or tech-
niques more often associated with links between structure and
process? (4) Do structure and process respond to disturbance
at different rates? (5) How are researchers attempting to evalu-
ate inferential or empirical links betweenmeasures of microbial
community structure and process?

METHODS

We synthesized recent literature that contained experimental
manipulations of environmental factors to induce stress on
microbial communities. We excluded field-based observational
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studies, such as environmental gradients, out of concern that
relationships observed between microbial community structure
and ecosystem processes within such studies might result from
unobserved drivers (not associated with the gradient of inter-
est) or reverse relationships where ecosystem function affects
community composition (as discussed by Krause et al. 2014).
By contrast, experimental manipulations allow researchers to
determine whether and how structure and process metrics re-
spond to a well-constrained change in the environment.

We used a set of structural terms and a set of process terms
to search the ISI Web of Science literature database for papers
published between 2009 and 2013 (Fig. S1, Supporting Informa-
tion). We required that papers include at least one of the pro-
cess terms and one of the structural terms. To achieve this,
we searched for papers containing processes where Topic =
‘decomp∗ OR methan∗ OR sulfate red∗ OR denitrif∗ OR dnf OR
nitrif∗’ and structures where Topic = ‘commun∗ OR gene∗ OR
physiolog∗’. The processes indicated by these terms are com-
monly explored in the ecological literature and the results from
this search yielded more papers than a search for ‘funct∗’ alone.
These structure-search terms were selected to return experi-
ments involving microbial communities rather than culture iso-
lates. The output from the structure- and process-search terms
in the ISI Database yielded 199 749 papers.We refined this search
by Topic = ‘microb∗’ to exclude papers focusing exclusively on
macroorganisms; this narrowed to the total to 32 386 papers
(Fig. S1, Supporting Information). We then restricted these re-
sults to ‘Environmental Sciences Ecology’ as the Research Area
and used ‘Topic = ecology’. From this output, we selected four
of the top five journals with the greatest number of paper re-
sults (FEMS Microbiology Ecology, Soil Biology & Biochemistry,
The ISME Journal and Microbial Ecology) (we excluded one of
the five journals (PLOS One, as a general journal)), two gen-
eral ecology journals (Ecology and Ecology Letters) and two ma-
jor full-spectrum journals (Nature and Science). Following a re-
view of this list of journals by experts in the field as part of
the Powell Center working group, we added a leading general
aquatic science journal (Limnology andOceanography). Limiting
our search to this subset of journals reduced our results to 1189
papers.

We examined the abstract of each paper for the following cri-
teria: (1) the studywas experimental, (2) at least one process and
one structural metric weremeasured simultaneously and (3) the
study altered at least one chemical or physical condition. We in-
cluded papers that manipulated biological conditions such as
tree girdling if a chemical or physical change to the environment
was documented. In total, we obtained 148 papers (12.4% of the
original 1189) that comprised the ‘full dataset’ (Box 2) used in
this synthesis.

For each of these 148 papers, we recorded the type of ma-
nipulation, the test location (laboratory or field), the duration of
the experiment, whether or not immigration or emigration was
possible based on open or closed experimental units, and which
groups of organisms were examined (microeukaryotes, archaea
and/or bacteria). We recorded each experimental treatment-
process combination separately, such that each paper could
have multiple ‘incidences’ if multiple processes were measured
or if multiple treatments were applied within a single study. For
example, a research project that used two treatments (e.g. ele-
vated temperature or a fertilizer addition) and measured both
N2O flux and CO2 flux in each treatment plot would result in
four separate incidences: one for N2O flux in the elevated tem-
perature plots, one for CO2 flux in those same elevated temper-
ature plots, and one each for the N2O flux and CO2 flux in the

fertilizer plots. Each of these incidences could contain multiple
structuremetrics if more than one aspect of the community was
measured (e.g. 16S rRNA and nirK genes). For each process mea-
sured, we denoted whether the authors measured ambient or
potential (i.e. rate measured with substrate enrichment) micro-
bial processes, as well as the technique used to assess microbial
community structure and the type of metric reported: relative
abundance, absolute abundance (per gram of soil) or presence-
absence.

Box 2 | Dataset Definitions
Full dataset: 148 papers that matched our search terms
and contained experiments that measured both amicrobial
community structure and a microbial process.
Changed dataset: a subset of 112 papers from the full
dataset in which both microbial community structure and
process changed.
Link-tested dataset: a subset of 128 incidences in 38 pa-
pers from the changed dataset where microbial community
structure-process incidences were tested for statistical sig-
nificance.
Linked dataset: a subset of 96 incidences in 28 papers from
the link-tested dataset in which structure-process links
were found to be statistically significant.
Paper: a single peer-reviewed publication, often containing
multiple incidences.
Incidence: the combination of a process and structures be-
tween which the authors looked for a link (e.g. an experi-
ment may make one structure measurement and two pro-
cess measurements resulting in two incidences: 16S rRNA
gene with N2O flux, and 16S rRNA gene with CO2 flux; or
one process and two community measures resulting in one
incidence: CO2 flux with 16S rRNA gene and nirK).

To examine the connections between structural and process
measures, we investigated whether or not each experimental
treatment resulted in (1) no change in either structure or pro-
cess metrics, (2) a process change only, (3) a structural change
only or (4) a change in both structure and process. For those that
reported simultaneous change in both structural and process at-
tributes, we further tallied whether or not the authors had sta-
tistically tested for a relationship between these attributes and
whether a statistical relationship, or link, was found. This sta-
tistically tested dataset (referred to as the ‘link-tested dataset’
hereafter) contained 38 papers (26% of the full dataset) with 96
incidences that found a link and 32 incidences that found no
link. For this link-tested dataset, we determined which genes or
taxonomic groups of organisms were tested with a process and
whichmetric of community structure had been used tomeasure
them (e.g. qPCR, DGGE and TRFLPs). For detailed information
on the generation of the link-tested dataset, see Supplementary
Methods.

Because measures of microbial community structure and
process were often taken at multiple time points following a
disturbance, we examined whether the time since the exper-
imental manipulation affected the likelihood of detecting ei-
ther a structural or process microbial response to experimen-
tal treatments. To investigate this, we examined the duration
of experiments in both the full set of experimental papers (148
papers) and the link-tested dataset (38 papers). Using the full
set of experimental papers, we compared the duration of inci-
dences in which there was a change in structure only, process
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Figure 1.Distribution of the literature synthesis results expressed in proportion of papers (A and B) or incidences (C) derived from the 148 papers thatmatched selection
criteria (see Methods). Papers contained multiple incidences; e.g. the 40% of structure-process change incidences from A occurred within 112 papers.

only, both, or neither. For this analysis, duration was defined
as the length of time from the first treatment application to a
time at which structure and processwere bothmeasured.We in-
cluded repeated measures of process or structure over the com-
pletion of the study. For example, if community structure and
a process were measured on the 5th and 30th day of the ex-
periment, a separate incidence was made for each date, so the
treatment would have two durations. Using this approach, we
were able to capture temporal changes in structure that might
occur on a different day from changes in process. Secondly, we
used our link-tested dataset to compare the duration of studies
inwhich a statistically significant linkwas present or absent. Be-
cause some studies combined time points in their analysis of a
link, the link-tested dataset contained only one time point per
incident, the duration recorded for each incident ended the day
that both a structural and process change were measured.

RESULTS
How frequently do publications report that an
experimental manipulation led to changes in microbial
community structure or microbially mediated
ecosystem processes? And how often do these changes
cooccur?

The set of 1189 papers matching our search terms comprised
less than 3% of the total number of papers published in the
targeted journals between 2009 and 2013 (Table S1, Supporting
Information). The majority of these papers were published in
Soil Biology & Biochemistry, FEMS Microbiology Ecology, Micro-
bial Ecology and The ISME Journal, respectively (Fig. S2, Sup-
porting Information). Moreover, only 12.4% (n = 148) of these
papers contained experiments that measured both microbial
community structure and microbial process in response to an
environmental manipulation (Fig. S1, Supporting Information).
For 19% of incidences (from 52 papers, 236 of 1082 incidences),
authors concluded no change in either a structure or process
metric, while 24% (68 papers, 219 incidences) reported only
structural shifts, and 17% (46 papers, 139 incidences) reported
only process changes. In the remaining 40% of incidences (112
papers, 488 incidences), authors detected both a process change

and a structural change in response to an experimental manip-
ulation (Fig. 1). This subset was our ‘changed dataset’. Within
each paper, we examined whether the authors did or did not
test for statistical links betweenmicrobial structural and process
responses to experimental manipulations. We found that only
38 of the 112 papers from the changed dataset were included
in the link-tested dataset because they specifically tested for a
statistical link between structure and process metrics (Fig. 1).
Many of these papersmeasuredmultiple structure-process inci-
dences so that our dataset included a total of 128 tested links.We
found that in 75% of incidences (from 28 papers, 96 incidences)
the authors identified a statistically significant relationship be-
tween structural and process responses to their experimental
manipulation and in 25% of incidences (from 16 papers, 32 inci-
dences) the tested linkwas not statistically significant. The set of
statistically significant linked incidences comprises our linked
dataset.

Do particular experimental conditions or techniques
more often associate with observed links between
community structure and microbial processes?

Experimental design
Although studies manipulated different variables, statistical
links between structure and process were most commonly
tested in studies that manipulated fertilizers and climate
change drivers (e.g. temperature and CO2) (Table S2, Supporting
Information). Among the incidences associated with fertiliza-
tion treatments (n = 36), such as the addition of ammonium ni-
trate or urea, 78% resulted in a significant link between structure
and process. In climate change manipulations (n = 27), which
comprised the nextmost common type ofmanipulation, 63% (17
incidences) showed a significant statistical relationship. Treat-
ments that exhibited significant relationships between structure
and process included warming (53% of incidences), elevated CO2

(35% of incidences) or a combination of both elevated tempera-
ture and CO2 (12% of incidences).

The proportion of significant links varied depending on the
techniques used for measuring community structure (Fig. 2A),
but not according to the group of organisms targeted (Fig. 2B),
the location of the experiment (laboratory or field, Fig. 2C) or
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Figure 2. Distribution of incidences among different experimental attributes

from the 38 papers that tested for a link betweenmicrobial community structure
and process. The number of incidences is indicated within each bar. (A) Type of
quantification of community structure; (B) major taxonomic groups targeted; (C)
laboratory versus field experiments; (D) allowance of microbial dispersal during
the experiment.

whether experimental design prevented dispersal into or out
of experimental units (Fig. 2D). Moreover, those experiments
using presence-absence measurements of community mem-
bership reported a smaller proportion of significant links be-
tween structure and process (36%) in comparison to those ex-
periments assessing relative (67%) or absolute abundances (58%)
of the present taxa. However, the number of incidences report-
ing presence-absence values was small (n = 11) compared to ei-
ther of the other two categories (n = 62 and 85 for absolute and
relative abundances, respectively) and included ordination tech-
niques, measures of diversity and specific taxonomic groups.

When examining our full dataset (148 papers), we found that
the duration of the experiment significantly affected some of the
observed responses (Fig. 3A, Kruskal–Wallis test, df= 3, P< 0.01).
Using incidence medians, changes in process alone occurred af-
ter shorter periods (27 days) than changes in structure alone
(61 days), or than concurrent changes in structure and process
(56 days) (Mann Whitney pairwise comparisons with Bonfer-
roni corrections, P < 0.02). However, there was no difference in
the duration of experiments that produced structure changes or
concurrent structure-process changes (P = 1.0). When we com-
pared durations with and without a statistically significant link
using the link-tested dataset, though, there was no significant

difference between the duration of linked and unlinked experi-
ments (Mann Whitney U test, df = 1, Z = -0.33, P = 0.74, Fig. 3B).
Using the entire datasets, experimental duration for studies in
the link-tested dataset was longer than the mean experimental
duration of the full dataset (Mann Whitney U test, df = 1, Z =
3.23, P < 0.01).

Ecosystem processes and community structure in the link-tested
dataset
Within the linked dataset, CO2 fluxes and nitrification were
the most frequently measured ecosystem processes (Fig. 4,
Table S3, Supporting Information). These processes were each
significantly linked to a microbial community structure at-
tribute in ca. 80% of incidences where a statistical test was
performed. Nitrificationwas themost commonlymeasured pro-
cess (18 incidences, 10 papers), followed by CO2 flux (17 in-
cidences, 9 papers), N2O flux (17 incidences, 10 papers) and
CH4 flux (15 incidences, 5 papers). A link between community
structure and microbial process was present in 100% of experi-
ments that attempted to link CH4 flux to amicrobial community
attribute. The same was true for ammonia oxidation, though
we came across only four such incidences, all within a single
paper. On the other end of the spectrum, there were no sig-
nificant links with community structure in experiments that
measured organic nitrogen decomposition, ammonification and
total activity from a suite of nine enzymes, though these conclu-
sions were supported by only two or three incidences for each
process.

Overall, the greatest number of incidences that tested for a
significant linkwith process targeted the 16S rRNA gene (51 inci-
dences, 12 papers), the denitrification gene nosZ (39 incidences,
12 papers) or the bacterial ammoniamonooxygenase gene amoA
(37 incidences, 14 papers) (Fig. 5, Table S4, Supporting Informa-
tion). The proportion of incidences thatwere linked varied by the
metric of community structure that was applied and included
both phylogenetically specific and universal genes or phyloge-
netically broad markers. All of the incidences in which commu-
nity structure measurements were defined using most proba-
ble number of methanogens (n = 8) and methanotrophs (n = 8),
16S rRNA genes (archaea) (n = 2) or cbh1 (cellobiohydrolase gene)
(n = 6) resulted in a statistical link with process, although these
incidences were drawn from only one or two papers. Nitrogen
cycling genes nosZ and nirS as well as the methane monooxy-
genase gene pmoA had the next highest percentage of links

Figure 3. (A) Duration of experiments from the 148 papers inwhich process changes [Proc] (n= 140), structural changes [Struc] (n= 221), simultaneous structure-process
changes [Both] (n = 488), or no changes [No effect](n = 237) were reported. Letters reflect Kruskal–Wallis rank sum test (df = 3, P < 0.01) followed by Mann Whitney
pairwise comparisons with Bonferroni corrections. Different letters indicate significant differences (P < 0.02) between categories. (B) Duration of experiments from 38

papers where both structure and process changed and a link was statistically tested (Mann Whitney U test, df = 1, Z = -0.33, P = 0.74).
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Figure 4. Distribution of incidences among microbial processes from the 38 papers that tested for statistical links between structure and process (link-tested dataset).
Different colors indicate the relative proportion of linked incidences associated with the different process metrics used. The numbers above each bar indicate the
number of papers from which the incidences were extracted and the total number of incidences. See Table S3 (Supporting Information) for additional processes not
included in figure due to fewer than two incidences.

Figure 5. Distribution of incidences among structural measurements from the 38 papers that tested for a statistical link between microbial community structure and
microbial process (link-tested dataset). Different colors indicate the relative proportion of positive incidences associated with the different compositional metrics

used. The numbers above each bar indicate the number of papers from which the incidences were extracted and the total number of incidences. Additional metrics
with fewer than two papers found in Table S4 (Supporting Information).

with 64–70% of incidences linked (n = 39, 30 and 6 total inci-
dences from 12, 8 and 1 paper(s), respectively). When tested
for, the remaining genes and organisms were linked with a pro-
cess in <55% of the incidences. Categories in which no link with
process was detected also included phylogenetically broad and
narrow groups. Broad categories included Gram-positive and
-negative bacteria (n = 4 and 12), often assessed using phospho-
lipid fatty acid (PLFA) techniques, as well as genes in fungi asso-
ciated with the internal transcribed spacer region (n = 5). More
specific genes not linked to any process included the nitrogen

cycling nifH gene and the sulfate-reducing dsrAB genes (n = 8
and 10).

Researchers attempted to link non-specialized processes
with genes that were narrowly distributed and vice versa. Oc-
casionally, these genes were also not directly related to the pro-
cess. To explore whether there were differences in the degree
of metabolic specialization of processes tested with a univer-
sal or specific gene, we examined incidences measuring either
the universal 16S rRNA gene or bacterial amoA gene (Fig. S4,
Supporting Information). These geneswere both common in our
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link-tested dataset. Multiple studies attempted to link bacterial
16S rRNA genes with both CO2 flux, a broad process performed
by all heterotrophs and with N2O flux, a more narrowly dis-
tributed process derived from both nitrification and denitrifica-
tion. Community structure assessed by the 16S rRNA gene was
linked to CO2 flux in 83% of the experiments where it was tested
(n = 5 of 6) but was never statistically associated with N2O flux
(n = 9). Attempts to link specific functional genes were consis-
tently well correlated with the associated process, e.g. nitrifica-
tion rates were linked with bacterial amoA gene frequencies in
100% of tests (n = 14). Conversely, specific genes were not sig-
nificantly related to the broad processes with which researchers
attempted to link them, e.g. amoA with CO2 flux (n = 3).

Molecular techniques used in the link-tested dataset
Community structure metrics used in the link-tested dataset
(38 papers) were dominated by four techniques: qPCR, T-RFLPs,
DGGE and PLFA. Approaches using DNA resulted in the high-
est percent of linked structure-process incidences. Quantitative
PCR (qPCR) of functional genes was used in 8 out of the 10
most commonly linked processes and was the only technique
that had a higher occurrence of links present (50 incidences)
than absent (33 incidences). Primarily, these analyses used rel-
ative abundances, (copy number ng DNA−1) (66%); though ab-
solute abundances (copy number g soil−1) were associated with
about one third of the incidences (33%). Roughly two-thirds
(68%) of structure-process pairs using relative abundance with
qPCR were statistically linked. This was a less common occur-
rence for links tested using absolute abundance (56% of pairs
linked). The next most commonly used techniques were DNA-
based Terminal Restriction Fragment Length Polymorphism
(T-RFLP) and DNA-based Denaturing Gel Gradient Electrophore-
sis (DGGE) which bothwere linked in 43% of incidences and used
for the 16S rRNA gene and functional genes (Fig. 5). DNA-based
T-RFLP was more commonly used (24 incidences linked: 20 rela-
tive abundance, 4 presence-absence) than DNA-based DGGE (15
incidences linked: 11 relative abundance, 4 presence-absence).
Methane flux was statistically linked to community structure in
100% of tested incidences in which structure was characterized
using five different techniques from five different papers, while
the other 100% linked process (ammonia oxidation) used only
qPCR andwas drawn from a single paper. RNA-based techniques
(reverse transcription qPCR and TRFLPs or DGGE using cDNA)
were used solely for exploring links with CH4 flux or oxidation,
denitrification, nitrification and decomposition. These were as-
sociated with a small percentage of the linked incidences in CH4

flux (n = 3), nitrification (n = 2) and decomposition (n = 1) (Fig. 4).
There was no apparent connection between the number of dif-
ferent techniques used and the likelihood of detecting a com-
munity structure-process link (Fig. S3, Supporting Information).

How are researchers attempting to identify links
between measures of microbial community structure
and process?

Abundance, diversity and presence-absence were all used to
measure community structure, though abundance was used
most frequently and contributed to more links than presence-
absence or diversity measures. Three of the four community
structure metrics that yielded 100% of linked incidences were
made from copy numbers or organism counts of methanogens,
methanotrophs or 16S rRNA genes (archaea) (Fig. 5, Table S4,
Supporting Information). Microorganisms with the cbh1 (cel-
lobiohydrolase) gene were other group with 100% of linked in-

cidences and had incidences evenly split between qPCR abun-
dance (n = 4) and T-RFLP-based diversity indices (n = 4). Each
of these fully linked metrics of community structure, however,
relied on results from only one or two papers. Nitrogen cycling
genes nosZ and nirS (12 and 8 papers, respectively) as well as
the methane monooxygenase gene pmoA (1 paper) had the next
highest percentage of links present (64–70%). The majority of
these links were also obtained using abundance instead of di-
versity metrics. With the nosZ gene, 15 out of the 25 linked in-
cidences (60%) used abundance data while the remaining 40%
used diversity metrics. In nirS, 19 incidences used abundance
(83%) and four used diversity (17%). Using pmoA, linkswith diver-
sity and abundancewere evenly split with two of four incidences
in each category. The most commonly used metric of commu-
nity structure targeted the universal segment of the 16S rRNA
gene (51 incidences) and yielded links nearly evenly split be-
tween abundance (12 incidences) and diversity metrics (13 inci-
dences). The secondmost commonmetric, the bacterial ammo-
nia monooxygenase gene amoA (41 incidences), had nine inci-
dences linked through diversitymeasures and 13 linked through
abundance.

The majority of structure-function links were tested using
correlation analysis. Likely reflecting the prevalence of abun-
dance metrics based on qPCR, the techniques used to test for
links were dominated by Spearman or Pearson’s correlation
analyses (68% of incidences, details not shown). Roughly 77% of
incidences that were tested using correlation analysis yielded
links, which mirrored the percentage of links present in the to-
tal dataset (75% of total incidences had a link present, Fig. 1).
Canonical correspondence analysis was the second most fre-
quently used technique and represented 11% of tests, but only
44% of those yielded a link. Incidences based on redundancy or
co-inertia analysis had 100% of incidences linked to process. Re-
gression analysiswas associatedwith only 5%of incidences, 75%
of which had a link present.

DISCUSSION

The literature synthesis presented here revealed that re-
searchers explicitly tested for a statistical link between micro-
bial community structure and process in only one third of inci-
dences from the experimental studies detecting structure and
process rate changes in response to experimental manipula-
tions. Yet, when authors reported testing for links they were
commonly found; three-quarters of tested incidences were sta-
tistically linked. Ideally, theories involving structure-process
links would generate publications with a stated hypothesis that
was statistically tested and fed back to theory development
(Fig. 6). However, this flowpath occurred in only 17% of papers.
This suggests thatmany datasetsmay be available to explore for
structure-process linkages or may support hypothesis genera-
tion. It is possible that due to publication bias toward statistically
significant results, these datasets were tested previously and
only significant results were reported. Regardless of whether or
not there was a greater number of unlinked structure-process
pairs thanwe report here, our analyses identifymany challenges
to consider when designing and conducting experiments to in-
vestigate microbial community structure and process links.

One major challenge in identifying and examining rela-
tionships between microbial community composition and pro-
cess responses is that we have little understanding of the
temporal scales at which changes in community structure
and related functional attributes occur. Microbial enzymes
can be modified by chemistry and biology of the surrounding
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Figure 6. Flowchart of guidelines for research involving microbial community structure and ecosystem processes overlain with ‘yes/no’ data from this literature
synthesis (n = number of papers). Research decisions lead to hypothesis testing or hypothesis generating paths.

environment before they are relevant for an ecosystem pro-
cess, thus creating a temporal disconnect between structure and
process. For example, phenotypic plasticity can lead to differ-
ences in activity over short periods without an apparent change
in taxonomic composition. This is illustrated by experiments
incorporating single-cell techniques such as microautoradiog-
raphy combined with fluorescence in situ hybridization which
have shown that bacterial activity can change greatlywithout an
apparent change in communitymembership (e.g. Ruiz-González
et al. 2012). This suggests that transformations in both micro-
bial structure and processes sometimes can be decoupled in
time, potentiallymisleading interpretations about links between
them. Within our link-tested dataset of incidences reporting
that both structure and process had changed, there was no dif-
ference between themedian duration of experiments where sig-
nificant links were detected and those where there were none.
This indicates that when experimental data captures structure
and process responses, the timescale of the experiment does
not affect the likelihood of detecting a link. In our full dataset
(148 papers), however, the median duration in which structure
changed (61 days) or both structure and process changed (56
days) was approximately twice as long as the mean duration
of studies reporting a process change alone (27 days) (Fig. 3).
This supports the idea that physiological responses precede, and
perhaps do not even require, community shifts (Comte, Fauteux
and del Giorgio 2013). Therefore, if processes are changing prior
to structure, researchers making early or infrequent measure-
ments may not capture data necessary to support a connection
between these two parameters. For longer experiments, there is
evidence that researchers sample less frequently: in their liter-
ature exploration of microbial responses to disturbance, Shade
et al. (2012a) identified a negative relationship between sampling
frequency and experiment duration. Thus, changes in process
from our full dataset (148 papers) may reflect higher frequency
sampling whereas changes in structure could result from less
frequent sampling over a longer duration. Because this elevates

the difficulty of identifying a connection, explicit consideration
of temporal factors in study design may decrease these discrep-
ancies.

Considerable experimental and empirical evidence has
shown that alteration of environmental variables such as tem-
perature, salinity, pH and nutrient concentrations often coincide
with shifts in structure and/or processes of microbial communi-
ties across a variety of ecosystems (e.g. Lozupone and Knight
2007; Braker, Schwarz and Conrad 2010; Vishnivetskaya et al.
2011; Herold, Baggs and Daniell 2012; Reed and Martiny 2012;
Shade et al. 2012b; Wertz, Leigh and Grayston 2012). In our com-
pilation of experiments within single study systems, most often
either only one or neither attribute responds to environmental
disturbance. Many studies have shown that pH can drive mul-
tiple types of compositional and process changes (e.g. Liu et al.
2010; Rousk et al. 2010;Meron et al. 2012; Cheng et al. 2013). There-
fore, it is surprising that the studies in our link-tested dataset
rarely manipulated pH directly (two incidences), though other
manipulations such as N additions often indirectly alter pH. The
addition of fertilizers was among the most commonly used dis-
turbance. Our finding that fertilization treatments such as urea
or ammonium nitrate additions were most likely to yield a link
between structure and process may have been a consequence
of fertilizer serving as a microbial resource, increasing plant-
derived carbon availability, and altering pH (Pierre 1928; Geis-
seler and Scow 2014). Alternatively, nitrogen could inhibitmicro-
bial growth and activity. Meta-analyses of nitrogen enrichment
studies found that under elevated nitrogen, microbial biomass
and CO2 flux may decline (Treseder 2008) and organic matter
decomposition may be impeded (Janssens et al. 2010) or the re-
calcitrant soil carbon pool may be less effectively decomposed
(Ramirez, Craine and Fierer 2010).

Of all the techniques used to characterize microbial com-
munity structure, links with microbial processes were most
commonly detected with qPCR. This suggests that a microbial
process is more likely to coincide with the relative or absolute
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membership of the responsible organisms instead of indirect
metrics such as composition or diversity of the community. Di-
versity metrics may be more representative of within commu-
nity dynamics than functional potential, yet in processes cat-
alyzed by organismswith specializedmetabolisms, diversity can
also adequately predict process stability and magnitude (Levine
et al. 2011). Often our ‘snapshot’ analysis of microbial communi-
ties also attempts to link structure to ecosystem processes with-
out identifying the influence of underlying ecological conditions
such as competition, assembly, tradeoffs and feedbacks (Prosser
et al. 2007; Prosser 2012), but arguably, this is a challenging task
for any field of ecology, not just microbial ecology.

In our link-tested dataset, both relative and absolute abun-
dance yielded a similar percentage of links. While this result
suggests that neither approach had an advantage in terms of un-
covering links, the contributing studies may have had little vari-
ation in total biomass between the control and treatment sam-
ples, resulting in similar relative and actual population sizes.
Presence-absence characterizations of communities, however,
provided less frequent links to process, likely because presence-
absence data provides little information about the dominant or-
ganisms within a community that might be responsible for the
process. This highlights that commonness or rarity attributes
of microbial communities may be important for understanding
function (Aanderud et al. 2015).

Given the large information output, decreasing costs of se-
quencing and suggested ecological applications (Poisot, Péquin
and Gravel 2013) we anticipated that next generation sequenc-
ing (NGS)would be a frequently used technique, but in fact, none
of the studies used NGS as a method for examining links be-
tween structure and process. This may be due to the use of NGS
in many observational studies instead of experiments, which
would have excluded them from our datasets or because of
prohibitive costs which increase quickly when striving to ful-
fill replication requirements (Prosser 2010). While these costs
continue to decrease, the time span we used for our literature
search may have captured studies that were completed while
NGS costs were still high. The use of NGS data enhances our
ability to characterize the diversity and composition ofmicrobial
communities at different levels of resolution, which could in-
fluence the detectability of relationships between structure and
process. For instance, if two taxa within a family respond op-
positely to an environmental perturbation, coarser-scale taxo-
nomic resolution such as order could obscure the actual change
in structure. This inconsistency in the response of closely re-
lated taxa has been documented across complex environmental
gradients (e.g. Bier, Voss and Bernhardt 2015), but may be more
the exception than the rule (Philippot et al. 2010; Lennon et al.
2012). A further consideration for NGS information is that it pro-
vides relative abundance data, and can result in substantial data
mining and type II error. Thus, it is critical for experiments in-
vestigating structure-process relationships with NGS to be hy-
pothesis motivated.

Guided by earlier hypotheses (Schimel 1995; Schimel, Ben-
nett and Fierer 2005), we expected that a confined guild of mi-
crobeswould contain amore similar overall geneticmakeup and
would be more likely to respond to a perturbation using simi-
lar mechanisms, whereas a guild containing a much more di-
verse genetic toolbox would respond to the same perturbation
in a greater variety of ways. Thus, there would be less variation
in process output from the confined guild and hence a greater
likelihood of a statistical link between guild structure and the
process measured. However, we found that links were not
only identified for processes governed by microbes with nar-

row phylogenetic distributions such as methane oxidizers,
methanogens and sulfate reducers, but also for processes per-
formed by awide diversity of taxa, for example, carbon substrate
utilization (Martiny, Treseder and Pusch 2013) (Fig. S4, Support-
ing Information). These findings support the idea that for some
processes, such as those related to soil moisture adaptation, or-
ganisms at coarse taxonomic levels have ecological coherence
(Philippot et al. 2010; Lennon et al. 2012).

An important consideration in ‘linkage studies’ should be
whether the linkage is direct and causal, or incidental being
driven by a master variable. This synthesis led us to reflect on
the use of universal genes for linking with specific, phylogenet-
ically narrow processes. For instance, the 16S rRNA gene was
used in correlation with methane flux and nitrification (Fig. S4,
Supporting Information). While employing the 16S rRNA gene
for sequencing would allow researchers to reduce costs for test-
ing connections between structure and multiple processes, this
broad approach may be more appropriate for hypothesis gen-
eration or incidental associations than targeted research ques-
tions (see Prosser 2013). Moreover, statistical links were tested
between indirectly related structure-process pairs. For instance,
archaeal ammonia oxidation genes were linked with denitrifica-
tion processes (Fig. S4, Supporting Information). This may stem
from a temptation to test every structure-process pair merely
because the data are available. Given that the probability of find-
ing a correlation increases with the number of variables, studies
with a small sample size run the risk of coincidental discover-
ies. In this synthesis, though, the number of different structure
or process metrics used per study did not exceed 10 and had no
influence on the likelihood of detecting a structure-process link
(Fig. S3, Supporting Information).

Although for this synthesis we used literature reporting
experimental manipulations of environmental variables, link-
age studies can also result from another class of experiments
that directly manipulate microbial community structure. This
structure-manipulation approach would potentially allow one
to assess the strength of structure-process links in a highly con-
trolled environment. For example, altering decomposer richness
may increase rates of CO2 mineralization (Bell et al. 2005), while
microbial evenness can affect responses to salt stress (Witte-
bolle et al. 2009). These studies unequivocally demonstrate that
composition affects function under some conditions and can
complement environmental manipulations to aid our under-
standing of microbial process responses.

We found that Spearman and Pearson’s correlations domi-
nated the statistical techniques used to assess structure-process
links, but these types of assessments may not be the most ef-
fective when considering structure changes in a community of
microbes. Correlations are useful for linear quantitative analy-
sis with specific genes, but do not establish causality. Microbes
both influence and respond to variations in the environment,
and these are difficult to separate with correlations. Further,
when assessing the community as a whole, correlation analyses
may obscure microbial interactions and non-linear responses
to manipulations if researchers have not designed a study with
the intent of exploring non-linearities. For community analyses,
multivariate statistics may yield more appropriate approaches
to testing these connections, but the multitude of options can
be difficult to assess. In response to this challenge, some re-
searchers have attempted to make the appropriate techniques
more accessible. For example, the GUide to STatistical Analysis
in Microbial Ecology (GUSTA ME) is a web resource that guides
users through new and accepted methods of analysis (Buttigieg
and Ramette 2014). Structural equation modeling is another
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important statistical technique that moves beyond the uni-
variate analysis of microbial communities and examines rela-
tionships among all the interacting biotic and abiotic variables
within an ecosystem (Grace et al. 2010). This technique has been
used successfully to determine, for example, that amoA abun-
dance information is important for understanding N cycling
rates in soils (Petersen et al. 2012).

CONCLUSIONS

By compiling recent literature where environmental manipula-
tions were conducted, we show that 36% of the papers collect-
ing microbial community structure and ecosystem process data
specified objectives or hypotheses regarding structure-process
links, yet less than half of these papers specifically reported
checking for the presence of a direct link between the two prop-
erties. And 17% of papers without structure-process hypotheses
tested for a link post hoc. Certainly, there are different objectives
specific to each study, but over and above the biological com-
plexity of these studies, our conclusions are likely complicated
by the addition of biases toward reporting positive results in aca-
demic culture. Given this bias, the low frequency with which
links were statistically explored and the even lower frequency
withwhich theywere reported should encourage us to think crit-
ically about the contribution of our data to hypothesis testing
as we reflect on the return for our investment. While hypoth-
esis generation is not without merit, there was a nearly equal
contribution of papers supporting hypotheses (n = 16) as those
generating hypotheses (n = 13) (Fig. 6). As the structure-process
knowledge base develops, we look forward to a greater portion
of studies testing hypotheses that may contribute to theories in-
volving structure and process links.

In addition, we had anticipated more links associated with
phylogenetically narrow groups, yet the prevalence of detected
structure-process links did not seem to follow any particular
type of perturbation, experimental design or analytical metric
aside from qPCR that would target these groups, thus limiting
our ability to elucidate the strength and ubiquity of connec-
tions between microbial community structure and microbially
mediated processes. Our potential for identifying connections
is improving as our fields implement standard methods (e.g.
Earth Microbiome Project) (http://www.earthmicrobiome.org/)
and metadata requirements (e.g. for uploading data to the Joint
Genome Institute and Metagenomic Rapid Annotations using
Subsystems Technology server). As we move forward, building
on collaborative, targeted efforts that yield experimental designs
with empirical associations among communities and ecosys-
tems may aid in our discovery of broader conclusions about the
relationships between structure and microbial processes.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSEC online.
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