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� The matrix formulation for regression and ANOVA
(Neter et al. 1996).

Both regression and ANOVA can be described using the
general linear model Y = X� + �, where

Y = an n x 1 column vector of values of the
response variable Y
There are n observations.
X = an n x p matrix with columns corresponding to
the p predictor variables Xi

� = an p x 1 column vector of parameters, with row
numbers corresponding to the column numbers in X
� = an n x 1 column vector of errors

In regression, the columns in X are fairly straightfor-
ward.  Most regression models contain an intercept (�o),
which is fit by setting the first column of X to a dummy
variable Xo with value=1 for all observations.  One col-
umn is added to the X matrix for each of the predictor
variables, and if there are interaction terms or polynomial
terms, the appropriate products or powers of the predictor
variables are added as additional columns. For example, in
simple linear regression, we use:

1    x11

1    x21

X =  1    x31.     ..     ..     .
1    xn1

In multiple regression with two predictors and an inter-
action, we use: 

1     x11 x12 x11 *x12

1     x21 x22 x21 *x22

X =  1     x31 x32 x31 *x32.      . . . ..      . . . ..      . . . .
1     xn1 xn2 xn1*xn2

In ANOVA, the X matrix contains qualitative indicator
variables indicating membership in treatment groups.  If
there are m groups, there are m columns in X. There are an
infinite number of ways to define the qualitative variables,
but one way is to calculate the overall mean for Y (using
the same approach described for �o, above) together with
deviations of particular treatments from this overall mean.

This involves assigning a column in X to all but one treat-
ment group; because the overall mean is already known,
the deviation for the last group is determined from the
sum of the other deviations. The indicator variables are
set to 1 when an observation (row) is in the group that
corresponds to that X variable, -1 if the observation is in
the treatment group without its own column, and 0 other-
wise.  For example, suppose there were four treatment
groups and three observations per group. The X matrix for
the models described in Table 1 might look like:

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0X = 1 0 0 1
1 0 0 1
1 0 0 1
1 -1 -1 -1
1 -1 -1 -1
1 -1 -1 -1

Regardless of how X is formulated, the equation
Y = X � + � is solved for � using the normal equations,
giving the parameter estimates

b
^  

= (Xl X)-1 Xl Y.

Once the parameters are estimated, we partition the
overall variance in the data as follows, given that p is the
number of columns in X (ie p=2 for a simple linear regres-
sion, p=4 for a two-factor regression, and p=m, the total
number of treatments, for any ANOVA).

Source SS df MS F

Model (M) bl Xl Y – nY
– 2 p-1 MSM MSM/MSE

Error (E) Yl  Y – bl Xl Y n-p MSE
Corrected
Total (T) Yl  Y –nY

– 2 n-1

We also determine the percent of variability explained
by the model, R2, as SSM/SST.

� Reference
Neter J, Kutner MH, Nachtsheim CJ, and Wasserman W. 1996.

Applied Linear Statistical Models. Chicago: Richard D Irwin,
Inc. 
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� Using RR designs to see the parallels between
regression and ANOVA

Replicated regression provides a currency for relating the
model and residual sums-of-squares (SS) for regression
and ANOVA models fit to the same data (Table 2B). The
alternative partitioning of sums of squares and degrees of
freedom has some interesting implications. Most impor-
tantly, the lack-of-fit SS (SSLOF) are part of the error SS
in regression (SSE), but part of the model SS in ANOVA
(SSA). As a result, we expect changes in R2 (and thus
effect size) between regression and ANOVA models
applied to the same dataset. R2 will always be bigger for
ANOVA than for regression by the amount SSLOF/SST. 

Table 2B. Partitioning variability in a RR dataset
according to the regression, RR, and ANOVA models

As a regression As a replicated As an ANOVA
regression

Source SS df SS df SS df

Model SSR 1 SSR 1 SSA m-1

Error SSE N-2 SSLOF m-2
SSPE N-m SSPE N-m

Total SST N-1 SST N-1 SST N-1

� Lack of fit tests

RR designs provide an underappreciated opportunity to
test whether a particular regression model is appropriate
for the data using lack-of-fit tests (Draper and Smith
1998). These tests are particularly good at diagnosing
deviations from the linear model that may be difficult to
detect by eye. Lack of fit tests work by partitioning resid-
ual variation around a regression line into two compo-
nents: that due to variability among replicates within a
treatment (the “pure error”) and that due to deviations of
the treatment means from the fitted curve (the “lack of
fit”; Table 2A). The pure error is obtained from an
ANOVA that uses the predictor variable(s) as a classifi-
cation factor rather than as a quantitative one, and the
lack-of-fit component is estimated from the difference
between the error SS from the regression model and the
error SS from the ANOVA model. There is significant
lack-of-fit when the ratio of the mean squares lack-of-fit
(MSL) to mean squares pure error (se

2) exceeds a critical
F-statistic. If there is no significant lack-of-fit, then the
regression model is appropriate for the data and conclu-
sions can be drawn accordingly. If, however, there is sig-
nificant lack-of-fit, remedial action is required. In some
cases, the regression model can be modified to be more
appropriate for the data, for example by adding polyno-
mial terms (which will reduce the power somewhat due to
the additional parameters). However, in other cases,
there is no appropriate linear model for the data. In this
case, researchers can switch to non-linear regression or
“fall back” to drawing conclusions using ANOVA. 

We note briefly that lack-of-fit tests are also available
for nonlinear regression, although we do not develop
them here (see Draper and Smith 1998 instead), provid-
ing another argument for the use of RR designs in ecolog-
ical research.

Table 2A. ANOVA table for a replicated regression
N indicates the total number of experimental units, p is
the number of columns of X, m indicates the number of
treatments with replicates, and nj is the number of repli-
cates for treatment j. 

Source SS df MS
Model Regression SS SSR p-1

Error Lack of fit SSLOF m-p MSL s2

Pure error SSPE N-m se
2

Total (corrected) N-1

Cottingham – Web-only Appendix 2. Replicated regression (RR) designs
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� How Figure 3 was created

To create the scenarios in Figure 3, we started with power
curves (as explained in Statistical Panel 2) for experi-
mental designs with 24 (Figure 1a), 36 (not shown), and
48 (Figure 1b) experimental units. We then selected a
minimum power for the ANOVA (0.8, following conven-
tion).

1. Left panel:  Minimum R2 vs the number of treatments.
On the power curves for experiment size, we drew a
line horizontally across the figure at the target power
level.  At each intersection of this “minimum power”
line with a power curve, we dropped down to the
X-axis and recorded R2 at that point, which is the min-
imum R2 required to produce that power for that exper-
imental design.  We then plotted this minimum R2

versus the number of treatments in that design in
Figure 3a. 

2.  Right panel:  Maximum allowable ratio of SSPE/SST
vs number of treatments
Statistical Panel 3 introduces several abbreviations for
the sum-of-squares terms in a replicated regression:  
• SSR = sums-of-squares due to regression
• SSPE = sums-of-squares due to pure error, the vari-

ability around the mean for each level of the predic-
tor variable(s)

• SSLOF = sums-of-squares due to lack of fit, the devi-
ation from the regression line not explained by the
ANOVA (determined as SSR-SSPE).  

From Table 2B in Web-only Appendix 2, we also
know that R2

anova = (SSR+SSLOF) / SST.  

Therefore, we can define
1-R2

anova = SST/SST – (SSR+SSLOF)/SST =
SSPE/SST, which provided us with a formula to con-
vert the minimum R2 obtained in Step 1 to the frac-
tion of the total variability that is explained by the
pure error, or variability among replicates within a
treatment.  

Estimates of SSPE/SST are closely related to those
used to calculate power analyses in t-tests and
straightforward ANOVA models, and so are fre-
quently estimable from past experiments (eg Case
Study Panel 3).

Cottingham – Web-only Appendix 3.
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Cut and paste the code for use in Matlab. The raw data file used for the simulation is available from the authors.

% calculatepower.m
% determine power for a series of potential one- and two-way experimental designs specified by the user
% author KL Cottingham (cottingham@dartmouth.edu)
% created 19 Dec 03 from compareRvsA_vsf2.m; 
% last modified 23 December 2004 for Frontiers website

% 888888888888888888888888888888888888888888888
% give the necessary info
% 888888888888888888888888888888888888888888888

clear;
lookpowerfigs=0; % toggle figures on and off
lookthresholds=0; % toggle evaluating thresholds on and off

% setups
output=[];
thresholds=[];

% specify the target p-value
alpha=0.05;

% prepare figures (if desired)
if lookpowerfigs,

figure(1); clf; orient tall;
end;

% set constraints
minnr=2; % minimum number of replicates per treatment
maxnr=5; % maximum number of replicates per treatment

% 888888888888888888888888888888888888888888888
% looping structure
% 888888888888888888888888888888888888888888888

% specify number of levels of factor A
for Alevels=2:4, %input('Number of levels of factor A? ');

% specify number of levels of factor B
for Blevels=1:4, %input('Number of levels of factor B? ');

% specify number of replicates of each cell
for nreps=minnr:maxnr, %input('Number of replicates per cell? ');

% 888888888888888888888888888888888888888888888
% determine df for regression & for ANOVA
% 888888888888888888888888888888888888888888888

% calculate number of EU
N=Alevels*Blevels*nreps;

% assume we're fitting a regression with three parameters: effects of A & B
% and their interaction
if Blevels==1, 

Cottingham – Web-onlWeb-only appendix 4.A Matlab program for calculating power.
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DFM_reg=1; 
else DFM_reg=3; 

end;
DFE_reg = N - DFM_reg - 1;

% assume we're fitting an ANOVA with main effects and interactions
DFM_anova=(Alevels-1) + (Blevels-1) + (Alevels-1)*(Blevels-1);
DFE_anova=N - DFM_anova - 1;

% 888888888888888888888888888888888888888888888
% calculate the power of each design, based on case 0 of Cohen Ch 9
% delta = (effect size)squared * (u+v+1)
% 888888888888888888888888888888888888888888888

% determine critical value of F needed to reject Ho: no difference for each design
Fcrit_reg=finv(1-alpha,DFM_reg,DFE_reg);
Fcrit_anova=finv(1-alpha,DFM_anova,DFE_anova);

% list of R2 to compare
R2 = (0 : 0.01 : 0.99)';

% list of effect sizes that go with those R2 values
% f2 = R2 / (1 - R2)
ES = R2 ./ (1-R2);

% calculate delta as f2 * (u+v+1)
delta = N.*ES;

%calculate the power for each design here following other program
power_reg=1-ncfcdf(Fcrit_reg,DFM_reg,DFE_reg,delta);
power_anova=1-ncfcdf(Fcrit_anova,DFM_anova,DFE_anova,delta);

output=[output; ones(length(ES),1)*[Alevels Blevels nreps] ES power_reg power_anova];

% 888888888888888888888888888888888888888888888
% plot power vs. effect size
% 888888888888888888888888888888888888888888888

if lookpowerfigs,
sb=sb+1;
if sb>8, sb=1; figno=figno+1; figure(figno); clf; orient tall; end;
subplot(4,2,sb);
semilogx(ES,power_reg,'r-',ES,power_anova,'k:');

if sb==1, legend('Regression','ANOVA',2); end;
ylabel('power');
xlabel('Effect Size');
title([num2str(Alevels) ' x ' num2str(Blevels) ' x ' num2str(nreps) ' design']);

end;

% 888888888888888888888888888888888888888888888
% determine thresholds of interest
% 888888888888888888888888888888888888888888888

reggtpt8=min(ES(find(power_reg>=0.8)));
anovagtpt8=min(ES(find(power_anova>=0.8)));
reggtanova=min(ES(find(power_reg>=power_anova)));
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reggtanovaandpt8=min(ES(find(power_reg>0.8 & power_reg>=power_anova)));

% 888888888888888888888888888888888888888888888
% use algebra to determine what SSR & SSPE need to be to exceed these
% thresholds
% 888888888888888888888888888888888888888888888

% regression power > 0.8
minpctSSR=reggtpt8./(reggtpt8+1);

% anova power > 0.8
maxpctSSPE=1./(anovagtpt8+1);

% (regression power > anova power) & (regr power > 0.8) -> works out to
minpctSSRforRtowin=reggtanovaandpt8./(reggtanovaandpt8+1);
maxpctSSPEforRtowin=1./(reggtanovaandpt8+1);

% 888888888888888888888888888888888888888888888
% collect these thresholds for particular designs: are there patterns?
% 888888888888888888888888888888888888888888888

thresholds=[thresholds; Alevels Blevels nreps minpctSSR maxpctSSPE minpctSSRforRtowin
maxpctSSPEforRtowin reggtanovaandpt8];

end; % for nreps 

end; % for Blevels
end; % for Alevels

save powervsESinfo.dat output /ascii;
save thresholds.dat thresholds /ascii;


