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Temporal variability in soil microbial communities
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Although numerous studies have investigated changes in soil microbial communities across space,
questions about the temporal variability in these communities and how this variability compares
across soils have received far less attention. We collected soils on a monthly basis (May to
November) from replicated plots representing three land-use types (conventional and reduced-input
row crop agricultural plots and early successional grasslands) maintained at a research site in
Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the
agricultural and early successional land uses harbored unique soil bacterial communities that
exhibited distinct temporal patterns. a-Diversity, the numbers of taxa or lineages, was significantly
influenced by the sampling month with the temporal variability in a-diversity exceeding the
variability between land-use types. In contrast, differences in community composition across land-
use types were reasonably constant across the 7-month period, suggesting that the time of
sampling is less important when assessing b-diversity patterns. Communities in the agricultural
soils were most variable over time and the changes were significantly correlated with soil moisture
and temperature. Temporal shifts in bacterial community composition within the successional
grassland plots were less predictable and are likely a product of complex interactions between the
soil environment and the more diverse plant community. Temporal variability needs to be carefully
assessed when comparing microbial diversity across soil types and the temporal patterns in
microbial community structure can not necessarily be generalized across land uses, even if those
soils are exposed to the same climatic conditions.
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Introduction

Soils are dynamic environments and the micro-
organisms that live in these habitats must contend or
respond to changing soil conditions, yet most
studies of soil bacterial communities focus on the
spatial variation in the diversity and composition of
soil microbial communities. In particular, there are a
relatively large number of studies documenting how
changes in land use alter soil bacterial communities
and the biogeochemical processes they carry out.
For example, we know that soils in managed
agricultural systems often have very different com-
munities from those found in unmanaged systems

(Jangid et al., 2008; Wu et al., 2008), with specific
management practices, including liming and nitro-
gen fertilization, often having strong effects on the
structure of soil microbial communities (Ramirez
et al., 2010; Rousk et al., 2010). We have a more
limited understanding of the temporal variability in
soil microbial communities, the factors that are
responsible for the observed temporal patterns, and
how such patterns may vary across different land-
use types.

Ecologists have long sought to understand the
biotic and abiotic factors that drive temporal
changes in the diversity and composition of plant
and animal communities. This holds true for
microbial ecology as well; there are numerous
studies focused on the temporal variability in
aquatic microbial communities, identifying the
biotic or abiotic factors driving the temporal
dynamics (for example, Huber et al., 2002; Gilbert
et al., 2009; Shade et al., 2012). In soil systems, there
is also a reasonably large body of literature focused
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on temporal variability in microbially driven biogeo-
chemical processes across time scales ranging from
minutes to years, but there are far fewer studies
specifically examining the temporal variability in soil
microbial communities. As the composition of micro-
bial communities can influence the rates of biogeo-
chemical processes and their responses to changing
environmental conditions (Schimel, 2001; Strickland
et al., 2009), an improved understanding of the
temporal variability in soil microbial communities
may help build a more comprehensive understanding
of soil function and how soil function changes across
land-use types. More generally, temporal analyses of
soil microbial communities can provide key insight
into the factors influencing the overall diversity of
soil microbial communities and the environmental
niches inhabited by the large proportion of soil
microbes that remain undescribed, just as time series
analyses have provided important insight into the
ecological attributes of specific plant and animal taxa
(Preston, 1960; Ives and Carpenter, 2007).

The few studies that have examined temporal
variability in soil microbial communities indicate
that the composition of bacterial and fungal com-
munities can vary on the scale of days (Zhang et al.,
2011), seasons (Schadt et al., 2003; Kennedy et al.,
2006; Lipson, 2007) and years (Buckley and
Schmidt, 2003; DeBruyn et al., 2011). In some cases,
the changes in these communities can be linked to
changes in soil environmental conditions (Rasche
et al., 2011). However, we often do not know how
the observed temporal variability in microbial
diversity and community composition compares in
magnitude to the differences between soil types or if
soil microbial communities exhibit predictable
temporal variation, that is, changes in community
structure and diversity that are directly related to
measurable changes in soil conditions or plant
phenology. Clearly our ability to resolve temporal
variability in soil microbial communities will
depend on the analytical methods employed and
the sampling design (Frostegard et al., 2011), with
some DNA-based studies indicating that spatial
variability may exceed temporal variability across
broader geographic gradients (Fierer and Jackson,
2006; Griffiths et al., 2011). The determination of
temporal patterns in soil microbial communities
requires, almost by definition, the analysis of a
relatively large number of samples as it is necessary
to discriminate between the temporal changes in
communities and those changes that are related to
the inherently high level of spatial heterogeneity
observed in soil. As a result, most previous work has
relied on methods (such as DNA fingerprinting) that
are reasonably high throughput, but quantify com-
munity changes with limited phylogenetic or taxo-
nomic resolution. With the availability of high-
throughput sequencing-based approaches, it is now
feasible to conduct detailed analyses of microbial
communities across a relatively large number of
samples (Knight et al., 2012), allowing us to describe

the temporal variability in soil microbial commu-
nities and quantify how temporal variability com-
pares to spatial variability within a given system.

Here we examined how the diversity and compo-
sition of soil bacterial communities changed across a
7-month period from replicated, experimental plots
representing three land-use types common to the
midwestern United States. We used barcoded
pyrosequencing of the 16S rRNA gene to compare
a-diversity (numbers of taxa or lineages) and
b-diversity (differences in community composition)
within and between land-use types over time. Given
that land use often has a strong effect on soil
bacterial communities, we hypothesized that each
land use would harbor a unique bacterial commu-
nity and that changes in a-diversity over time would
be lower than differences in a-diversity between
land-use types. Likewise, we hypothesized that
b-diversity, and the relative abundances of indivi-
dual taxa, would be more variable across land uses
than within individual land use over time. Where
we do observe significant temporal shifts in either a-
or b-diversity, we hypothesized that these shifts
would correspond to measured changes in soil
conditions and soil biogeochemical processes.

Materials and methods

Site description and sample collection
The sampling sites are part of the main cropping
experiment at W.K. Kellogg Biological Station, a
long-term ecological research site located in southern
Michigan, USA (42.40 1N, 85.40 1W), which includes
several different land-use types common to the
region. Each land use is replicated (six plots per
land use) in a random block design with all plots
located within 2 km of each other (individual plots
are B1700 m2; http://houghton.kbs.msu.edu/maps/
images/2008plotmap.pdf). Average annual pre-
cipitation at the site is 890 mm, with approximately
half falling as snow, and the mean annual tempera-
ture is 9.0 1C. The soils are sandy loam to silt clay
loams derived from glacial till and are generally
classified as fine-loamy, mixed, mesic Typic Haplu-
dalfs with total soil C and N concentrations of 1.3%
and 0.13%, respectively, soil pH of 5.5 and a cation
exchange capacity of 5.5 cmol kg� 1.

Soil samples were collected from two agricultural
land-use types (conventional and reduced-input
row crops) and an early successional grassland
(noted as T1, T3 and T7 at the KBS Main Cropping
site, respectively). Each of the 18 plots were
sampled at aB1-month intervals during the 2008
growing season (May through November excluding
September, Figure 1). The conventional till and
reduced-input land-uses have an annual rotation of
crop plants with corn grown on these plots in 2008.
Corn was seeded in early May and the reduced-
input plots were also planted with a Trifolium
pratense (L.) cover crop. The plant community in
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the early successional land-use type is dominated by
Solidago canadensis (L.), Apocynum cannabinum
(L.) and Phleum pratense (L.), and has not been
tilled since 1989. The early succession plots are
burned annually in April. A nitrogen fertilizer
solution of urea, ammonium and nitrate was applied
to both conventional and reduced-input plots at
planting, but the reduced-input plots received
roughly a third of the total fertilizer applied to the
conventional plots (156 kg ha�1). The agricultural
plots also received a herbicide treatment in the
middle of May. Additional details on these plots and
their management can be found at http://lter.kbs.
msu.edu/datatables/150.

We collected mineral soil from six locations
within each plot to a depth of 5 cm using a standard
soil corer (2.5 cm diameter) from each location and
combining the cores to make a composite sample
representing each plot at each time point. Each
composite soil sample was sieved through 2-mm
mesh, homogenized and stored at � 20 1C before
processing/extraction. Together, we analyzed a total
of 108 soil samples (3 land-use types � 6 replicate
plots per land use � 6 time points per plot).

Biogeochemical and environmental measurements
We evaluated trace gas flux, soil moisture and
temperature to identify whether changes in bacterial
diversity through time were related to biogeochemical
processes. We estimated soil CO2 (kg C-CO2 ha�1

day� 1), N2O and CH4 (g N-N2O or C-CH4 ha� 1 day� 1)

fluxes using permanently installed in-situ static
chambers on a bimonthly to monthly basis in four
locations within each plot following the protocols
described in Ambus and Robertson (Ambus and
Robertson, 2006). Soil inorganic N concentrations
(NH4

þ and NO3
� ) were quantified on a monthly basis

using the composited soil samples collected from each
plot. Specifically, soils were extracted within 48 h via
a 1-M KCl extraction (1:10 w/v), passed through a
Whatman no. 1 filter and measured on an OI
Analytical Flow Solution IV analyzer (OI Analytical,
College Station TX, USA). The air temperature and
precipitation data for our study period was based on
daily averages from the weather station located at the
KBS long-term ecological research (Figure 1).

Molecular analyses
The DNA was extracted with a portion of the 16S
rRNA gene amplified and pyrosequenced according
to methods described previously (Lauber et al.,
2009). Briefly, 0.1–0.2 g of soil was loaded into bead
tubes containing solution C1 of the MoBio Power
Soil DNA extraction kit (MoBio Laboratories, Inc.,
Carlsbad, CA, USA), incubated for 10 min at 65 1C
and then vortexed for 2 min at maximum speed with
the MoBio vortex adapter. The remaining steps of
the extraction procedure were performed as directed
by the manufacturer. The V4–V5 regions of the 16S
rRNA gene were amplified from the extracted DNA
using primers designed to amplify bacteria and
archaea with few biases against individual taxa

Figure 1 Precipitation and mean air temperature across the 7-month sampling period. Daily precipitation and mean air temperature
were gathered from the KBS weather station (http://lter.kbs.msu.edu/datatables/7). Plus signs (þ ) indicate time points when soil was
collected for the bacterial community analyses.
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(Bates et al., 2011; Bergmann et al., 2011). The
primers anneal to positions 515 and 806 (based on
Escherichia coli 16S rRNA numbering) and contain
the A and B 454 FLX adapters and a 2-bp linker 50 to
the 16S-specific portion of the oligonucleotide. In
addition, the forward primer contains a unique
12-bp barcode to allow sequences to be assigned to
specific samples. All PCR reactions were performed
in triplicate using 1� 5 Prime Hot Master Mix
(5 PRIME Inc., Gaithersburg, MD, USA), 5pmol
forward and reverse primers, and 2ml template DNA
(Bates et al., 2011). Amplicons from replicate PCR
reactions were pooled and cleaned using the MoBio
PCR clean up kit and quantified using a Picogreen
dsDNA assay (Life Technologies, Grand Island, NY,
USA). An equal amount of amplified DNA from
each sample was combined into a single tube
and sequenced at Engencore (University of South
Carolina) on a Roche 454 GS-FLX-Titanium sequencer.

Quality filtering and sequence analyses
Sequences were processed using QIIME (Caporaso
et al., 2010b), an analysis pipeline available at
http://qiime.sourceforge.net/, using the default para-
meters to eliminate sequences of poor quality
(quality score o25, homopolymer runs of 46 nt
and length o200 nt). Phylotypes were determined at
the X97% sequence similarity level using the
UCLUST algorithm (Edgar, 2010). A representative
sequence for each phylotype was aligned against the
Greengenes coreset (DeSantis et al., 2006) using
PyNAST (Caporaso et al., 2010a), with sequences
classified using the Hugenholtz taxonomy via
BLAST (Altschul et al., 1990). The alignment was
filtered to remove common gaps with a phylogenetic
tree constructed de novo using FastTree (Price et al.,
2009). a-diversity (diversity of microbial commu-
nities found within individual samples) was esti-
mated using Faith’s phylogenetic diversity metric
(Faith’s PD (Faith, 1992) and a taxonomic metric, the
number of phylotypes per sample. We relied on
Faith’s phylogenetic diversity metric for correlation
analyses instead of the more commonly used
taxonomic metrics as phylogenetic diversity levels
are less sensitive to sequencing errors and/or errors
introduced during de novo identification of unique
phylotypes (Kuczynski et al., 2010). All downstream
analyses, including a- and b-diversity analyses, as
well as estimates of taxon abundances were deter-
mined at a set sequencing depth per sample (1000
randomly selected sequences per sample). This per-
sample rarefaction of the data set is essential to
ensure that differences in sequencing depth do not
bias our estimates of a-or b-diversity (Lozupone
et al., 2011; Lundin et al., 2012).

Data analysis
The overall effect of land use on a- and b-diversity
was determined using ANOVAs (implemented
in R, http://www.r-project.org/) and permutational

MANOVAs (PerMANOVAs (Clarke and Gorley, 2006)),
respectively. Temporal variability in b-diversity
were assessed using the PerMANOVA procedure
with month as the main factor, allowing for full
permutation of the raw data with Monte Carlo tests
accounting for Type III error, where the fixed effects
sum to zero with 9999 permutations. Changes in
b-diversity across time (using May as the baseline)
were calculated for each land use as the percent
difference between average monthly UniFrac dis-
tances, a phylogenetic metric of pairwise differences
between communities (Lozupone and Knight, 2005).
Mantel tests were conducted in PRIMER (Clarke and
Gorley, 2006) to identify relationships between
weighted UniFrac distances and euclidean distances
of Julian date, soil gas flux and the measured soil
properties. We used Pearson correlations to identify
relationships between soil properties, Faith’s PD
and taxon abundances.

Results and discussion

Sequencing effort
The barcoded pyrosequencing of our soils resulted
in 278 408 quality sequences averaging 2600
sequences per sample (ranging from 118 to 6003)
with a mean read length of 304 bp (the full length of
the amplified gene region). Of the initial 108
samples, one failed to sequence with an additional
9 samples having o1000 sequences, yielding a total
of 98 samples that were used for downstream
analyses. The sequences are deposited in EBI under
the accession number ERP002214.

a-Diversity is highly variable across time
Contrary to our hypothesis, the temporal variability
in a-diversity within a given land use was greater
than the differences in a-diversity between land-use
types (Figure 2). The a-diversity patterns between

Figure 2 Changes in a-diversity measured using Faith’s phylo-
genetic diversity (PD) (Faith, 1992). The average PD for each land
use on each sampling date is plotted with ±1 s.e. of the mean.
Asterisks indicate a significant land-use effect on Faith’s PD
(ANOVA Po0.05) for a given sampling date.
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the land-use types varied across the sampling period
and no single land-use type consistently harbored
the most diverse bacterial communities across all
time points (Figure 2). Furthermore, a-diversity on
the agricultural land use was more variable than was
observed in the early successional soils. These
results suggest that comparisons of a-diversity levels
that are based on a single time point should be
considered with caution as the patterns may change
over time, that is, patterns evident at a single time
point may not hold across multiple time points.
Spatial variability may exceed temporal variability
in situations where the soils being examined
represent broad gradients in soil properties (Fierer
and Jackson, 2006), but this may not always be the
case and, as shown here, plots with high levels of
diversity in 1 month may have far lower levels of
diversity if sampled in a different month.

Relationship of a-diversity to soil properties
The distinct seasonal patterns in a-diversity within
the agricultural and early successional land uses
(Figure 2) suggest that a unique set of factors may be
linked to the temporal dynamics of soil bacterial
communities in these plots. a-Diversity was signifi-
cantly correlated with soil moisture and temperature
in the conventional (Pearson r¼ 0.47 and � 0.63,
respectively, Po0.05 in both cases) and reduced-
input land uses (r¼ 0.72 and � 0.55, respectively;
Po0.05 in both cases) while only soil moisture was
correlated with Faith’s PD in the soils from the early
successional land-use type (r¼ 0.51, P¼ 0.03)
(Supplementary Table 1). A similar pattern of
correlation was also noted between the number of
phylotypes and the same edaphic factors
(Supplementary Table 1). Soil inorganic N levels
and fluxes of C-CH4, C-CO2 and N-N2O were
poor predictors of the a-diversity patterns
(Supplementary Table 1), suggesting that temporal
changes in a-diversity were unrelated to changes in

biogeochemical conditions over the time scale of
this study.

The relationship of a-diversity to soil moisture
and temperature varied across the land-use types.
Whereas Faith’s PD was negatively correlated with
soil moisture in the agricultural land uses, it was
positively correlated with diversity in the early
successional plots even though the temporal pat-
terns in soil moisture levels were nearly identical
across all plots (Supplementary Table 2). These
distinct diversity patterns may be related to differ-
ences in plant phenologies between the land-use
types that could directly or indirectly influence the
temporal patterns of diversity. In particular, we
suspect that temporal differences in rhizodeposition
rates may be contributing to shifts in diversity, as we
know that the inputs of microbially available
organic C from rhizodeposition can vary over time
(Butler et al., 2003; Kaiser et al., 2010) and that
microbial communities can be sensitive to these
sources of organic C (Grayston et al., 2001;
Macdonald et al., 2004; Paterson et al., 2007).

b-Diversity varies more across land uses than across
time
As predicted, land-use had a significant effect on
bacterial b-diversity with the agricultural and early
successional land-use types harboring soil bacterial
communities that were distinct from one another
regardless of the time the soils were collected
(Figure 3a; PerMANOVA, pseudo-F¼ 18, Po0.001,
Supplementary Figure 1), and are in contrast with
previous work indicating temporal variability
exceeded treatment effects in a Californian grass-
land (Cruz-Martinez et al., 2009).The unique clus-
tering of the early successional land use apart from
the other land-use types was due to higher relative
abundances of taxa belonging to the Verrucomicro-
bia, Bacteroidetes and Planctomycetes phyla in
these soils compared with the agricultural soils
(Figure 3b). In particular, Verrucomicrobia were 2.5

Figure 3 Weighted UniFrac and taxonomic composition between land uses. (a) Pairwise, weighted UniFrac distances visualized on
principle coordinates plot (PCoA) with the percent of variation explained by each axis noted in parentheses. PerMANOVA pseudo-F and
P-value for land-use effect on b-diversity are reported in the text. (b) Mean relative abundances of taxa within each land use. The
abundance of each taxon was calculated as the percentage of sequences per land use for a given bacterial group.
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times more abundant in the early successional soils
compared with agricultural soils, a pattern that is
consistent with previous work showing this phylum
to be less prevalent in cultivated soils than in other
land uses (Buckley and Schmidt, 2001b). Though
the bacterial communities in the conventional and
reduced-input agricultural soils were significantly
different from one another (PerMANOVA pseudo-F
¼ 3.6, P¼ 0.001), the dominant phyla and proteo-
bacterial sub-phyla shared similar relative abun-
dances across these agricultural land-use types
(Figure 3). The differences between the cultivated
and early successional grassland plots (Figure 3a)
mirror those reported previously where agricultural
and non-agricultural soils (even those located in
close proximity) often harbor distinct communities
(Buckley and Schmidt, 2001a; Bissett et al., 2011;
Jangid et al., 2011). However, the specific taxa
driving the separation in communities across differ-
ent land-use types at this site (Figure 3b) are not
necessarily the same as those driving the land-use
patterns observed in other studies; the taxa
responses are likely variable across studies due to
study-specific differences in land use, soil or site
characteristics. Nevertheless, this work not only
highlights that agricultural practices can have strong
effects on soil biota, effects that were larger in
magnitude than the temporal variability in commu-
nity composition within land-use types at KBS, but
also suggests that the magnitude of change over time
may be specific for individual soil types or climatic
regions (Cruz-Martinez et al., 2009).

Even though the agricultural soils always had
communities that were distinct from those found in
the early successional soils, bacterial communities
within individual land-use types did vary signifi-
cantly across the growing season (pseudo-F41.5,
Po0.01 in all cases, Supplementary Figure 1).
UniFrac distances changed, on average, by more
than 10% from the initial time point for both the
conventional and reduced-input land uses
(Figure 4), while average UniFrac distances differed
by only 5% in the early successional land-use plots
across the time series. These patterns are reflected in
Table 1 showing that the relative abundances of the
dominant phyla and sub-phyla were more variable
in the agricultural soils than in the early succes-
sional soils. The differences in the magnitude of the
temporal variability could be related to the land
management practices (for example, fertilizer appli-
cations) or differences in plant community compo-
sition and phenology. Likewise, differences in the
life history strategies of the dominant bacterial taxa
found in these land-use types, and their relationship
to soil properties (discussed below) likely contribute
to the temporal variability observed in these soils.

b-diversity and temporal changes in soil properties
We analyzed relationships between b-diversity, time
and soil properties within each land use using

Mantel tests. Within each of the land-use types,
Julian date was significantly correlated with Uni-
Frac distances across the sampling period (Table 2),
but sampling date was a far better predictor of
community composition in the agricultural soils
than in the soils from the early successional land
use (Table 2). Of the remaining factors, soil moisture
and temperature were significantly correlated with
community similarity in both agricultural land-use
types (Global R40.27, Po0.05 in both cases), but
not in the early successional plots even though all
soils shared similar moisture and temperature
regimes (Supplementary Table 2). We did not find
any significant relationships between measured soil
gas fluxes and inorganic soil N concentrations
within any of the land-use types, suggesting that
temporal changes in biogeochemical processes do
not correspond to temporal changes in the composi-
tion of the soil bacterial communities. The temporal
variability in soil processes may be more related to
changes in the relative abundances of active mem-
bers of the soil community, which could be
documented using RNA-based approaches
(Buckley and Schmidt, 2001a; Baldrian et al.,
2012), not the DNA-based approach used here.
Alternatively, we would expect these processes to
be controlled, in part, by the fungal communities
(which were not characterized here) or only a small
portion of the bacterial community that changes in
membership over time, thus, obscuring any relation-
ships between overall community composition and
the measured process rates.

Temporal shifts in the relative abundances of specific
bacterial taxa
Regardless of the land-use type, acidobacterial
abundances typically peaked in August (19–23%)
and decreased to seasonal lows (16%) during the
end of the sampling period, while Actinobacteria

Figure 4 Percent difference in UniFrac distances within
land-use types over time. Changes in UniFrac distance were
calculated as the percent difference from May using the average
pairwise distance at each of the proceeding time points.
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were most abundant in October (9–16%) and
November (Table 1; further summarized in
Supplementary Table 3). The observed changes in
acidobacterial and actinobacterial abundances were
significantly correlated with soil moisture and
temperature in all of the land-use types with
Acidobacteria becoming less abundant when the
soils were moister and cooler, and Actinobacteria
exhibiting the opposite pattern (Table 1;
Supplementary Table 2; Smit et al., 2001). These
patterns could be related to the moisture or
temperature preferences of these taxa (Placella
et al., 2012) or, alternatively, these patterns may be
related to a presumed late season peak in plant litter
and root exudates that may favor Actinobacteria
over the more oligotrophic Acidobacteria (Fierer
et al., 2007). The relative abundances of Gamma-
proteobacteria, a group known to be sensitive to soil
moisture (Lipson, 2007), were typically lowest in
August when the soils were driest (Table 1,
Supplementary Table 2), though relative abun-
dances were only significantly correlated with soil
moisture in the conventional land-use type (Table 1,
Supplementary Table 1). Alternatively, since
Gammaproteobacteria is often considered to be a
copiotrophic group (Fierer et al., 2007), thriving
when carbon availability is highest, the observed
changes in relative abundances may be driven by
changes in the quantity and quality of organic
carbon available from plant litter inputs or root
exudation. As carbon availability is likely to be
closely tied to soil moisture and temperature
conditions (Knorr et al., 2005), it is difficult to
identify the specific in-situ factors driving the
observed changes in relative abundances of these
diverse taxonomic groups over time.

Conclusions

Not only does land use has a significant role in
determining the composition of soil bacterial com-
munities, land use also influences how theseT
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. Table 2 Mantel correlation coefficients between soil properties

and UniFrac distance

Conventional Reduced
input

Early
successional

C-CH4 (g ha�1 d�1) �0.13 �0.05 �0.03
C-CO2 (kg ha�1 d�1) 0.004 �0.01 �0.07
N-N2O (g ha�1 d� 1) 0.154 0.03 �0.04
Julian date 0.51 0.38 0.18
Percent soil moisture 0.43 0.42 0.08
Soil temperature (1C) 0.54 0.27 0.14
Inorganic N (mg kg�1) 0.07 0.04 0.04

Normalized soil data were used to calculate pairwise euclidean
distances before performing Mantel correlations. Bold text indicates
P-values o0.05.
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communities change over time. Both a- and
b-diversity varied over time but the soils from the
different land-use types did not exhibit identical
temporal dynamics even though all the soils were
located in close proximity and exposed to the same
climatic conditions. This finding suggests that
land-use type and, in particular, differences in
vegetation dynamics may have a large role in
modulating the temporal variability in soil bacterial
communities.
a-Diversity was highly variable over time with the
land uses harboring the most diverse soil bacterial
communities changing on a month-to-month basis.
In contrast, the agricultural and early successional
land-use types always had communities that were
distinct from one another regardless of the month
the soils were collected, suggesting that b-diversity
patterns are relatively constant over time, a pattern
that has been observed elsewhere (Krave et al.,
2002; Fierer and Jackson, 2006; Wallenstein et al.,
2007). We observed significant differences in
b-diversity over time, however, these differences
were generally lower in magnitude than the
differences between the agricultural and early
successional land-use types. Within land-use types,
shifts in community composition were often corre-
lated with soil moisture and temperature condi-
tions, suggesting that these factors directly or
indirectly regulate the structure of soil bacterial
communities. Additional research is required to
identify the specific drivers of the temporal
dynamics exhibited by soil bacterial communities
and to determine whether the observed shifts in
bacterial community composition parallel changes
in the functional attributes of these communities
over time.
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