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Summary

A recent analysis revealed that most environmental
microbiologists neglect replication in their science
(Prosser, 2010). Of all peer-reviewed papers pub-
lished during 2009 in the field’s leading journals,
slightly more than 70% lacked replication when it
came to analyzing microbial community data. The
paucity of replication is viewed as an ‘endemic’ and
‘embarrassing’ problem that amounts to ‘bad
science’, or worse yet, as the title suggests, lying
(Prosser, 2010). Although replication is an important
component of experimental design, it is possible
to do good science without replication. There are
various quantitative techniques – some old, some
new – that, when used properly, will allow environ-
mental microbiologists to make strong statistical con-
clusions from experimental and comparative data.
Here, I provide examples where unreplicated data can
be used to test hypotheses and yield novel informa-
tion in a statistically robust manner.

Introduction

The quality and impact of science is contingent upon good
experimental design. When designing a study, scientists
must consider issues such as randomization, block
effects and controls. In addition, careful decisions need to
be made about how to allocate experimental units to
achieve an appropriate level of replication. Replication is
the fundamental way by which we quantify random and
systematic variation in a study system. In many instances,
it is the partitioning of this variance that allows us to make
inferences about the outcomes of our experiments with

some level of certainty. Therefore, when studies are con-
ducted without replication, there is risk of drawing weak or
invalid conclusions. Nevertheless, environmental microbi-
ologists can deliberately design or fortuitously encounter
unreplicated data sets. If handled with the proper statisti-
cal procedures, some unreplicated data can be used to
test hypotheses and generate novel insight into microbial
processes.

Unreplicated regression

Let us revisit the hypothetical example of the undergradu-
ate student sampling lake bacteria (Prosser, 2010). The
student observed more bacteria in one lake than in a
second lake. However, he only obtained a single obser-
vation from each lake. With such limited sampling, no
conclusions can be drawn about bacterial abundances in
these two lakes. The supervisor recommends that the
student collect additional replicate samples from the two
lakes. Because it is relatively easy to enumerate cell
densities, let us assume the student obtains 10 replicate
samples from different locations in each lake (n = 20).
This will capture some of the spatial heterogeneity within
the lakes and provide ample statistical power to test the
null hypothesis that bacterial densities are the same in
both lakes. The student analyses the resulting data with a
Student’s t-test and concludes that, in fact, bacterial abun-
dance is statistically greater in the first lake than the
second lake.

But now what? Let us assume the student and super-
visor have access to basic water chemistry data and find
that total phosphorus (TP) is much higher in the first lake
than in the second lake. This would provide a convenient
explanation for the observed differences between the
lakes since freshwater bacteria are often limited by phos-
phorus availability. With these data alone, however, it is
impossible to conclude what factors are responsible for
the differences in bacterial abundance between the two
lakes. The student could have designed his study slightly
differently, and with the same number of observations
(and no within-lake replication), obtained more informa-
tion about controls on bacterial abundance. Using a com-
parative approach (see Gasol and Duarte, 2000), he
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could have measured bacterial abundance one time from
20 different lakes and tested whether there was a positive
statistical relationship with TP using regression analysis.

Regression is a flexible and powerful statistical
approach that can be used in comparative or experimen-
tal studies. Importantly, it does not require replication. For
those who have been indoctrinated to replicate, it can
seem a bit reckless, or even wrong to deliberately design
a study that relies on unreplicated regression. Some
people view regression as an estimation procedure, not a
hypothesis-testing tool, but there is no theoretical or math-
ematical basis for this view (Cottingham et al., 2005).
Unreplicated regression is sometimes perceived as risky,
too. What happens if, for unexplained reasons, one of
your experimental units does not ‘behave’ well (i.e. it is an
outlier)? Won’t this sink your entire experiment? Not nec-
essarily. Unreplicated regression designs are often more
powerful than replicated designs, such as analysis of vari-
ance (ANOVA). Although they share the same underlying
mathematical framework and similar types of assump-
tions, the matrix of independent variables in ANOVA has
more parameters than a regression design given the
same number of observations (Cottingham et al., 2005).
Thus, all else being equal, a researcher is more likely to
reject the null hypothesis when it is false (i.e. a lower type
II error rate) using unreplicated regression than with rep-
licated ANOVA. Furthermore, regression designs provide
extra information. Specifically, the parameter values (i.e.
intercepts and slopes) from regression analyses can be
used for making predictions about how a variable of inter-
est (e.g. bacterial abundance) will respond to changing
conditions (e.g. increased TP). These parameters also
allow researchers to detect non-linearities and thresholds
along environmental gradients, and can be valuable for
the development of simulation models used to explore the
behaviour of more complex systems (Gotelli and Ellison,
2004). Last, there are philosophical and historical views
that influence how scientists design experiments. For
example, in the field of ecology during the early 1980s,
scientists grew less accepting of the descriptive
approaches that were common at that time (Strong et al.,
1984). As a result, more attention was devoted to the
rigorous design of experiments, the vast majority of which
were analysed using ANOVA (e.g. Hurlbert, 1984; Werner,
1998). Arguably, the discipline of ecology matured during
this transition period, but it has also been argued that the
ANOVA mindset can be restrictive and act as a ‘mental
straightjacket’ that limits our ability to conceptualize pro-
cesses and interactions (Werner, 1998).

Unreplicated time series

Often in environmental microbiology, we quantify how
populations and communities change through time to

better understand processes such as succession or
recovery from perturbations. For a number of reasons,
replication tends to be less common in studies that focus
on temporal dynamics. First, because of time or monetary
constraints, environmental microbiologists may design
studies with a limited number of experimental units (see
excuse i in Prosser, 2010). This results in an inherit trade-
off between the degree of (spatial) replication and the
resolution of temporal sampling. Second, the benefits of
replication are not always obvious in certain situations.
For example, in whole ecosystem experiments (e.g. phos-
phorus enrichment of a lake), it can be challenging to
identify appropriate ‘controls’ (Carpenter, 1990; Schindler,
1998), and rarely are treatments of this scale replicated.
Lastly, long-term observational studies can become inter-
rupted by unplanned events (e.g. oil spill). The resulting
‘natural’ experiments provide unique opportunities for sci-
entific inquiry, but logistical or ethical issues may constrain
the design and analysis of the study (Miao and Carstenn,
2006).

Fortunately, there is a suite of statistical techniques that
can be used to make robust inferences about unreplicated
time-series data (e.g. Diggle, 1990; Pole et al., 1994;
Bence, 1995). Occasionally, these techniques are
grounded in different statistical philosophies (Bayesian
versus Frequentist), but in general, they rely on
approaches that go beyond what is taught to graduate
students in a traditional microbiology programme. Take
for example a study that examined how the variability
and predictability of microbial dynamics were affected by
nutrient enrichment. Lake 227 in north-western Ontario,
Canada is a famous lake that has been the focus of
whole-ecosystem manipulations since 1969. Cottingham
and colleagues (2000) examined a time series of fossil
pigments collected from sediment varves during unper-
turbed (1944–1965) and fertilized (1969–1990) time
periods. Microbial community composition was recon-
structed annually yielding a unique 40-year time series.
However, because these observations were temporally
autocorrelated, they could not technically be treated as
replicates. The researchers overcame this hurdle using a
Bayesian technique called dynamic linear modelling
(DLM), which explicitly deals with the non-independence
of time-series data (Pole et al., 1994). Results from the
DLM analysis revealed that that the forecast uncertainty
of microeukaryotic and bacterial phototrophs increased
when Lake 227 underwent nutrient enrichment. Despite
the lack of replication in the time series, this experiment
uniquely demonstrated that eutrophication can decrease
the predictability of community and ecosystem dynamics.
Less traditional techniques are also being applied to
unreplicated time-series data to understand microbial
species interactions in laboratory-scale bioreactors
(Trosvik et al., 2008).

1384 J. T. Lennon

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 13, 1383–1386



Replication and inference space

In the preceding sections, I provided examples of quanti-
tative procedures that allow scientists to analyse some
unreplicated data sets without violating any statistical
‘rules’. Nevertheless, the lack of replication seriously
impinges upon the inference space of a study. Let us
return to the undergraduate student who now wants to
characterize bacterial composition via deep sequencing
of the 16S rRNA genes using a single sample from each
of the two lakes. Once again, even though there is no
replication in his study, there are approaches that
would permit the student to statistically compare the two
samples. Randomization procedures, including Monte
Carlo simulations and other permutation-based algo-
rithms, provide researchers with the opportunity to resa-
mple their data and test whether multivariate sequences
obtained from non-replicated samples came from the
same statistical population (e.g. Solow, 1993; Schloss
et al., 2004). Using one of these techniques, the student
finds that the two samples are statistically distinct.
However, the inference from his analysis cannot be
extended beyond the two samples that were analysed. In
other words, the student must stop short of drawing con-
clusions about differences in the composition of bacteria
between the two lakes. How can this problem be rem-
edied? As Prosser (2010) points out, it costs about the
same amount of money to generate 90 000 sequences
from one sample as it costs to generate 30 000
sequences from three replicate samples. Therefore, the
student would have gained more inference about the
potential differences in bacterial composition between
the lakes by allocating effort towards replication rather
than sequencing depth.

Unreplicated results � lies, just as replicated
results � truth

More often than not, replication is a critical ingredient in
a well-executed and influential experiment. Therefore, a
lack of replication in the field of environmental microbi-
ology is alarming and may reflect, in part, inadequate
training in biostatistics (Prosser, 2010). A traditional
course in biostatistics should emphasize the importance
of replication. A progressive course in biostatistics,
however, should convey that there are some situations
where replication is either not feasible or not necessary,
depending on the question and system (see Ellison and
Dennis, 2010). Ultimately, environmental microbiologist
must appreciate that replication determines a study’s
inference space, but that it also provides a relatively
straightforward way to accept or reject hypotheses,
which is an essential tool for testing theory (Prosser
et al., 2007). It is also important that environmental

microbiologists understand that there are quantitative
approaches for analysing unreplicated data sets; when
applied appropriately, these techniques offer flexibility,
yield robust conclusions and may generate novel insight
into the ecology of microbial systems.
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