S1 (table)

This supplementary information includes the data and corresponding citations presented in Box 1 Figure for the proportion of inactive cells in different systems. Active cells were assessed using general eubacterial FISH (fluorescent *in situ* hybridization) probes or through the uptake and incorporation of CTC (5-cyano-2,3ditolyl tetrazolium chloride). The total number of cells was determined using DAPI staining. The proportion of inactive cells was estimated as [1 – (active cell count / total cell count)].

System	Method	Percent Inactive
Activated sludge ¹	СТС	60
Activated sludge ²	FISH	11
Activated sludge ³	FISH	30
Activated sludge ⁴	FISH	38
Activated sludge ⁵	FISH	20
Human feces ⁶	FISH	30
Human feces ⁷	FISH	23
Human feces ⁸	FISH	3
Human feces ⁹	FISH	32
Lake ¹⁰	FISH	49
Lake ¹⁰	FISH	54
Lake ¹⁰	FISH	39
Lake ¹⁰	FISH	54
Lake ¹⁰	FISH	54
Lake ¹⁰	FISH	54
Lake ¹⁰	FISH	51
Lake ¹⁰	FISH	41
Lake ¹⁰	FISH	39
Lake ¹⁰	FISH	56
Lake ¹⁰	FISH	45
Lake ¹⁰	FISH	57
Lake ¹⁰	FISH	51
Lake ¹⁰	FISH	47
Lake ¹⁰	FISH	41
Lake ¹¹	FISH	23
Lake ¹¹	FISH	42
Lake ¹¹	FISH	37
Lake ¹¹	FISH	47
Lake ¹¹	FISH	39
Lake ¹¹	FISH	50
Lake ¹¹	FISH	57

Lake ¹¹	FISH	58
Lake ¹¹	FISH	50
Lake ¹¹	FISH	52
Lake ¹¹	FISH	39
Lake ¹¹	FISH	36
Lake ¹¹	FISH	23
Lake ¹¹	FISH	18
Lake ¹¹	FISH	55
Lake ¹¹	FISH	43
Lake ¹¹	FISH	48
Lake ¹¹	FISH	41
Lake ¹¹	FISH	60
Lake ¹¹	FISH	56
Lake ¹¹	FISH	56
Lake ¹¹	FISH	47
Lake ¹¹	FISH	56
Lake ¹¹	FISH	51
Lake ¹¹	FISH	35
Lake ¹¹	FISH	30
Lake ¹¹	FISH	22
Lake ¹¹	FISH	37
Lake ¹¹	FISH	45
Lake ¹¹	FISH	57
Lake ¹¹	FISH	42
Lake ¹¹	FISH	64
Lake ¹¹	FISH	74
Lake ¹¹	FISH	56
Lake ¹¹	FISH	41
Lake ¹¹	FISH	57
Lake ¹¹	FISH	35
Lake ¹¹	FISH	36
Lake ¹¹	FISH	41
Marine ¹²	FISH	74
Marine ¹⁰	FISH	58
Marine ¹⁰	FISH	4
Marine ¹⁰	FISH	15
Marine ¹⁰	FISH	43
Marine ¹⁰	FISH	39
Marine ¹⁰	FISH	28
Marine ¹³	FISH	12
Marine ¹³	FISH	28
Marine ¹³	FISH	45
Marine ¹³	FISH	12
Marine ¹³	FISH	20
Marine ¹³	FISH	35
Marine ¹³	FISH	20
Marine ¹³	FISH	19
Marine ¹³	FISH	30

Marine ¹³	FISH	12
Marine ¹³	FISH	15
Marine ¹⁴	FISH	30
Marine ¹⁴	FISH	25
Marine ¹⁴	FISH	38
Marine ¹⁴	FISH	78
Marine ¹⁴	FISH	22
Marine ¹⁴	FISH	47
Marine ¹⁴	FISH	64
Marine ¹⁰	FISH	28
Marine ¹⁰	FISH	36
Marine ¹⁰	FISH	38
Marine ¹⁰	FISH	34
Marine ¹⁰	FISH	61
Marine ¹⁵	FISH	41.1
Marine ¹⁵	FISH	28.6
Marine ¹⁵	FISH	39.7
Marine ¹⁵	FISH	68.8
Soil ¹⁶	CTC	96
Soil ¹⁷	CTC	72
Soil ¹⁸	CTC	75
Soil ¹⁹	CTC	96
Soil ²⁰	FISH	95
Soil ²¹	FISH	61

References

- 1 Griebe, T., Schaule, G. & Wuertz, S. Determination of microbial respiratory and redox activity in activated sludge. *Journal of Industrial Microbiology & Biotechnology* 19, 118-122 (1997).
- Wagner, M., Amann, R., Lemmer, H. & Schleifer, K. H. Probing activated sludge with oligonucleotides specific for Proteobacteria inadequacy of culture-dependent methods for describing microbial community structure.
 Applied and Environmental Microbiology 59, 1520-1525 (1993).
- Bond, P. L., Erhart, R., Wagner, M., Keller, J. & Blackall, L. L. Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. *Applied and Environmental Microbiology* 65, 4077-4084 (1999).

- Neef, A., Witzenberger, R. & Kampfer, P. Detection of sphingomonads and in *situ* identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. *Journal of Industrial Microbiology & Biotechnology* 23, 261-267 (1999).
- 5 Wong, M. T., Tan, F. M., Ng, W. J. & Liu, W. T. Identification and occurrence of tetrad-forming Alphaproteobacteria in anaerobic-aerobic activated sludge processes. *Microbiology-Sgm* 150, 3741-3748 (2004).
- 6 Zoetendal, E. G. *et al.* Quantification of uncultured *Ruminococcus obeum*-like bacteria in human fecal samples by fluorescent *in situ* hybridization and flow cytometry using 16S rRNA-targeted probes. *Applied and Environmental Microbiology* 68, 4225-4232 (2002).
- 7 Aminov, R. I. *et al.* Molecular diversity, cultivation, and improved detection by fluorescent *in situ* hybridization of a dominant group of human gut bacteria related to *Roseburia* spp. or *Eubacterium rectale*. *Applied and Environmental Microbiology* 72, 6371-6376 (2006).
- Franks, A. H. *et al.* Variations of bacterial populations in human feces
 measured by fluorescent *in situ* hybridization with group-specific 16S rRNA Targeted oligonucleotide probes. *Applied and Environmental Microbiology* 64, 3336-3345 (1998).
- Harmsen, H. J. M., Raangs, G. C., He, T., Degener, J. E. & Welling, G. W.
 Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. *Applied and Environmental Microbiology* 68, 2982-2990 (2002).
- 10 Glockner, F. O., Fuchs, B. M. & Amann, R. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence *in situ*

hybridization. *Applied and Environmental Microbiology* 65, 3721-3726 (1999).

- Pernthaler, J. *et al.* Seasonal community and population dynamics of pelagic
 bacteria and archaea in a high mountain lake. *Applied and Environmental Microbiology* 64, 4299-4306 (1998).
- 12 Fuchs, B. M., Zubkov, M. V., Sahm, K., Burkill, P. H. & Amann, R. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. *Environmental Microbiology* 2, 191-201 (2000).
- 13 Cottrell, M. T. & Kirchman, D. L. Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. *Applied and Environmental Microbiology* 66, 1692-1697 (2000).
- Karner, M. & Fuhrman, J. A. Determination of active marine
 bacterioplankton: A comparison of universal 16S rRNA probes,
 autoradiography, and nucleoid staining. *Applied and Environmental Microbiology* 63, 1208-1213 (1997).
- 15 Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and *in situ* abundance of pelagic bacteria from the North Sea. *Applied and Environmental Microbiology* 66, 3044-3051 (2000).
- 16 Winding, A., Binnerup, S. J. & Sorensen, J. Viability of indigenous soil bacteria assayed by respiratory activity and growth. *Applied and Environmental Microbiology* 60, 2869-2875 (1994).
- 17 Yu, W., Dodds, W. K., Banks, M. K., Skalsky, J. & Strauss, E. A. Optimal staining and storage time for direct microscopic enumeration of total and

active bacteria in soil with two fluorescent dyes. *Applied and Environmental Microbiology* 61, 3367-3372 (1995).

- 18 Montealegre, C. M., van Kessel, C., Russelle, M. P. & Sadowsky, M. J. Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. *Plant and Soil* 243, 197-207 (2002).
- Dodds, W. K. *et al.* Biological properties of soil and subsurface sediments under abandoned pasture and cropland. *Soil Biology & Biochemistry* 28, 837-846 (1996).
- 20 Christensen, H., Hansen, M. & Sorensen, J. Counting and size classification of active soil bacteria by fluorescence *in situ* hybridization with an rRNA oligonucleotide probe. *Applied and Environmental Microbiology* 65, 1753-1761 (1999).
- 21 Zarda, B. *et al.* Analysis of bacterial community structure in bulk soil by *in situ* hybridization. *Archives of Microbiology* 168, 185-192 (1997).

Supplementary information S2 (box)

This supplementary information provides a brief description of the methods used for the metagenomic analyses presented in Box 2. Percent of genomes were calculated using *recA* recovery and gene length correction¹. Tblastx was used with *hipA*, *hipB*, *relE*, *relB*, *mazE*, *mazF*, *yafQ*, *and dinJ*, sequences from the *E*. *coli* K-12 genome accessed using http://ecogene.org/ and the *RpfC* sequence from the *M*. *tuberculosis* H37Rv genome accessed with NCBI entrez. Metagenome matches to the above query sequences were reverse-blasted against NCBI's non-redundant protein sequences (nr) using blastx for quality control.

Reference

 Mou, X., Sun, S., Edwards, R. A., Hodson, R. E. & Moran, M. A. Bacterial carbon processing by generalist species in the coastal ocean. *Nature* 451, 708-711 (2008).

S3 (table)

This supplementary information describes the acquisition and analysis of the *z*-value data presented in Fig. 3b of the manuscript. *z*-values for macroorganisms come from a large collection of data that were assembled by Drakare and colleagues¹. We used a total of 443 observations from the Drakare paper; for visual purposes, we eliminated 44 data points which had z-values that were negative or >1. *z*-values for microorganisms (n = 21) came from the studies found in Table S3. We statistically compared the *z*-values for macroorganisms and microorganisms using a t-test on \log_{10} transformed values to account for unequal variance.

Table S3

A collection of *z*-values for microorganisms from different systems.

Taxa/System	<i>z</i> -value
Salt marsh bacteria ²	0.0300
Soil bacteria ³	0.0300
Benthic ciliates ⁴	0.0430
Benthic diatoms ⁵	0.0660
Desert fungi ⁶	0.0740
Benthic ciliates ⁵	0.0770
Lake bacteria ⁷	0.1040
Aquatic Phytoplankton ⁸	0.1340
Sump tank bacteria ⁹	0.2700
Tree hole bacteria ¹⁰	0.2600
Soil bacteria ¹¹	0.4500
Soil fungi – ectomycorrhizal fungi ¹²	0.2000

Soil bacteria – functional gene sequences ¹²	0.0624
Soil bacteria – functional gene ¹²	0.0141
Soil bacteria – carbon degradation genes ¹²	0.0638
Soil bacteria – nitrification genes ¹²	0.0722
Soil bacteria – nitrogen reduction genes ¹²	0.0898
Soil bacteria – organic degradation genes ¹²	0.0850
Soil bacteria – metal reduction genes ¹²	0.0574
Soil fungi ¹²	0.0616
Soil archaea ¹²	0.0475
Soil bacteria ¹²	0.0748
Soil bacteria Gram-positive ¹²	0.0626
Soil bacteria Gram-negative ¹²	0.051
Soil bacteria α-Proteobacteria ¹²	0.0521
Soil bacteria β-Proteobacteria ¹²	0.0662
Soil bacteria δ-Proteobacteria ¹²	0.0519
Soil bacteria γ-Proteobacteria ¹²	0.0644

References

- 1 Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species-area relationships. *Ecology Letters* **9**, 215-227 (2006).
- 2 Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M. A taxaarea relationship for bacteria. *Nature* **432**, 750-753 (2004).
- 3 Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. *Proceedings of the National Academy of Sciences of the United States of America* **103**, 626-631 (2006).

- Finlay, B. J., Esteban, G. F. & Fenchel, T. Protozoan diversity: Converging estimates of the global number of free-living ciliate species. *Protist* 149, 29-37 (1998).
- 5 Azovsky, A. I. Size-dependent species-area relationships in benthos: is the world more diverse for microbes? *Ecography* **25**, 273-282 (2002).
- 6 Green, J. L. *et al.* Spatial scaling of microbial eukaryote diversity. *Nature* 432, 747-750 (2004).
- Reche, I., Pulido-Villena, E., Morales-Baquero, R. & Casamayor, E. O. Does
 ecosystem size determine aquatic bacterial richness? *Ecology* 86, 1715-1722
 (2005).
- 8 Smith, V. H. *et al.* Phytoplankton species richness scales consistently from laboratory microcosms to the world's oceans. *Proceedings of the National Academy of Sciences of the United States of America* **102**, 4393-4396 (2005).
- 9 van der Gast, C. J., Lilley, A. K., Ager, D. & Thompson, I. P. Island size and bacterial diversity in an archipelago of engineering machines. *Environmental Microbiology* 7, 1220-1226 (2005).
- Bell, T. *et al.* Larger islands house more bacterial taxa. *Science* 308, 1884-1884 (2005).
- Noguez, A. M. *et al.* Microbial macroecology: highly structured prokaryotic soil assemblages in a tropical deciduous forest. *Global Ecology and Biogeography* 14, 241-248 (2005).
- Zhou, J. Z., Kang, S., Schadt, C. W. & Garten, C. T. Spatial scaling of functional gene diversity across various microbial taxa. *Proceedings of the National Academy of Sciences of the United States of America* 105, 7768-7773 (2008).