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Abstract

Patterns underpin ecological theories and paradigms. While over a dozen ecological patterns are considered
to be classic or even law-like, most are divided among non-overlapping theories and subfields. As a result,
ecology lacks a holistic understanding for how primary patterns can emerge in unison. We developed a
simulation-based platform for this purpose. The Emergence platform encodes energetic costs, ecological
selection, stochasticity, and multiplicative interactions. These phenomena capture the basis of life history
trade-offs, resource-limited growth, the importance of stochasticity and determinism, and the nonlinear na-
ture of ecological dynamics. Emergence builds individual-based models from random starting conditions and
allows ecological selection to operate on random variation in species traits. Emergence generates established
patterns of commonness and rarity, scaling patterns from metabolic theory and biodiversity theory, growth
and abundance patterns of population ecology. Our platform reveals that iconic ecological patterns that
span paradigms, theories, and subdisciplines can simultaneously emerge from random starting conditions
when basic principles are observed.

Introduction

The foundations of ecology are built on the discovery, explanation, and prediction of relationships between
organisms and their environment, i.e., ecological patterns (MacArthur 1972, Lawton 1996). Such patterns
have inspired ecological paradigms for over a century and are the signatures of ecological mechanisms (Table
1). Some ecological patterns have been documented since the time of Darwin’s publications (e.g., Watson
1859) or even earlier (e.g., Malthus 1798). To this day, ecologists seek unified theories for the common
explanation of patterns (e.g., Hubbell 2001, McGill 2010, Harte 2011) and continue to uncover patterns
using increasingly large and diverse datasets (e.g., Locey and Lennon 2016). However, the many common
patterns of ecology are largely studied in isolation, divided among subdisciplines and theories with little
overlap.

Given enough time and resources, an army of ecologists could document many commonly studied patterns in
an environment of sufficient diversity and space. Physiological ecologists and macroecologists could document
the many allometric relationships of metabolic theory (Brown et al. 2004). Population ecologists could reveal
patterns of growth while life historians could measure trade-offs in reproductive strategies (Begon et al. 2009).
Community ecologists and biodiversity scientists could test their many models and theories of biodiversity
against empirical patterns of commonness and rarity (McGill 2010). Ecologists that specialize on particular
taxa (e.g., microbial ecologists, mammalogists, plant ecologists) or different scales (e.g., molecular ecologists,
macroecologists) could document these and many other patterns in their respective systems. Yet despite
their united effort, this army of ecologists would likely splinter when analyzing their patterns with theory
and models.

Most ecological models only generate one pattern and few ecological theories make more than one or two
predictions (McGill et al. 2007). Even within the same subfield, different theories can have little-to-no overlap.
For example, metabolic theory of ecology (MTE) and the maximum entropy of theory of ecology (METE)
are both macroecological theories. MTE predicts scaling patterns related to body size, the most powerful
of which is the 3/4 scaling of metabolic rate (Brown et al. 2004). However, MTE does not predict patterns
of commonness and rarity such as the species abundance distribution (SAD) and species-area relationship
(SAR). In contrast, METE predicts several patterns of commonness and rarity, including the SAD and SAR
(Harte 2011). However, METE makes no predictions of metabolic scaling. Despite their shared subfield and
generality, METE and MTE do not make predictions about any of the same patterns and use few, if any, of
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the same inputs. Specifically, while METE uses species richness, total community abundance, and area as
primary inputs, MTE uses body size and average temperature. Beyond a single subdiscipline, the disconnect
among theories and paradigms only amplifies when considering the fundamental patterns across the field of
ecology.

Ecologists have rarely considered how patterns from across subdisciplines, paradigms, and theories can
simultaneously emerge. This is perhaps due to the difficulties of empirical study and the challenges of deriving
elegant models that are capable of producing multiple patterns. However, one form of ecological modeling is
amenable to this task, i.e., individual-based modeling (IBM). IBMs encode rules of how individual particles
(e.g., organisms, resource particles) behave according to theories, principles, mechanisms, and processes (e.g.,
Rosindell et al. 2015, Hellweger et al. 2016). IBMs can allow population- to ecosystem-level dynamics to
emerge over time and space, and can provide degrees of ecological realism, individual variability, and spatial
complexity that are untenable with other modeling approaches (Grimm and Railsback 2005). IBMs can also
allow realistic and unanticipated patterns and dynamics to emerge from otherwise simple individual-level
interactions and multiple dimensions of ecological complexity (e.g., Locey et al. 2017). Finally, IBMs allow
researchers to track, record, and analyze an immense amount of information.

Here, we leverage the power of ecological IBMs with a relatively simple platform that encodes the first
principles of several ecological theories. This platform, called Emergence, allows the user to run thousands
of IBMs to study the simultaneous emergence of iconic ecological patterns. Below, we provide a detailed
explanation of how Emergence works, the data it quantifies and tracks, the theories and principles that
Emergence integrates, and the analyses and tests that can be conducted using the Emergence source code.

Methods

Platform description

Here, we describe Emergence largely according to the ODD protocol (Overview, Design concepts, Details),
which is standard for describing IBMs (Grimm et al. 2006). Unlike most ecological IBMs, which are used to
simulate specific systems (DeAngelis and Gross 1992, Grimm and Railsback 2005), Emergence is a distributed
software platform for running unlimited numbers of IBMs and for studying the simultaneous emergence of
ecological patterns from across subdisciplines and theories. A detailed description of Emergence’s source
files, functions, and analysis code can be found on the public GitHub source code and data repository
(https://github.com/LennonLab/Emergence). The Emergence software can also be downloaded and installed
from the Python Package Index: https://pypi.python.org/pypi/Emergence.

Purpose

Emergence is intended to allow the user to study how patterns from multiple ecological theories, subdisci-
plines, and paradigms can simultaneously emerge. These paradigms include metabolic scaling and physio-
logical ecology, community ecology and biogeography, life history, neutral theory, resource limitation, and
population ecology. Emergence accomplishes three proximate objectives. First, Emergence assembles and
runs IBMs from random combinations of system variables and species traits. Second, Emergence stores the
outputs of IBMs including animations. Third, Emergence provides python code for analyzing simulation
data.

Entities & their state variables

Individual organisms – Emergence simulates life history processes of growth, dispersal, reproduction, and
basal respiration at the individual level. Individuals are distinguished by collections of elements within
dictionaries, i.e., data objects that hold key-value pairs. For example, the dictionary holding information on
individual organisms is structured as follows:
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iDict = {'ind1' : 'sp' = 0,
'x' = 1.2,
'y' = 3.5,
'sz' = 813.2,
'q' = 1,
'st' = 'a';

'ind2' : ...}

where ‘ind1’ is the key and the variables following the colon are the values for the species ID, x-coordinate, y-
coordinate, body size, amount of endogenous resources, and metabolic state (active or dormant). Individuals
undergo changes when randomly sampled from the dictionary.

Species – Each species is characterized by the individuals that share a common set of traits, such as
maximum growth rate, metabolic maintenance cost. Species information is stored in dictionaries, again as
key-value pairs.

spDict = {'1' : 'gr' = 0.8,
'di' = 0.5,
'rp' = 0.3,
'mt' = 0.2,
'mf' = 0.1,
'ef' = [0.1, 0.2, 0.3];

'2' : ...}

where the species with ID of ‘1’ has an intrinsic growth rate of 0.8, an active dispersal rate of 0.5, a 0.3
probability of randomly resuscitating from a metabolically dormant state, a basal mass specific metabolic
rate of 0.2, and resource specific use efficiencies of 0.1, 0.2, and 0.3.

When sampling individuals, the information about their species is gained by accessing the species dictionary.

Resource particles – Emergence simulates the movement and consumption of individual resource particles.
These particles can vary over several orders of magnitude in size and belong to three resource types. As with
individual organisms and species, information about individual resource particles is stored in dictionaries.

rDict = {'1' : t = 1,
'v' = 0.5,
'x' = 0.3,
'y' = 0.2,

'2' : ...}

where ‘t’ is the resource type, ‘v’ is the size of the particle, and ‘x’ and ‘y’ are the x and y coordinates.

System level state variables

Each Emergence model begins with random choices for the values of:

• Width, in arbitrary units
• Height, in arbitrary units
• Flow through rate in units of distance moved per time step by the environmental matrix; a minimum

of 0.
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Spatial and temporal scales

Spatial extent – The environment of Emergence is square and two dimensional, and can vary along each axis
from 1 to any number of arbitrary units. All particles move in decimal units, the limit of which is determined
by Python’s decimal precision. This means that individual particles can occupy practically infinite locations.

Temporal extent – Emergence models can run for any number of discrete time steps and record data at
any number of time steps.

Process overview and scheduling

Model assembly – The Emergence user runs the main python program (i.e., main.py). The main program
chooses random values for system-level state variables including whether disturbance, immigration, specia-
tion, etc. will occur and at what rates. The main program also imports modules (i.e., groups of functions)
for diversity metrics, spatial analysis, the initiation of output files, and for simulating life history processes
(immigration, maintenance, death, growth, consumption, disturbance, passive dispersal, active dispersal,
resource flow, resource inflow, and metabolic state transitions).

Simulating life history – Emergence models begin simulation immediately after assembly. The order of
life history processes is randomized at each time step to prevent scheduling bias. The simulation of the
following life history processes can be modified in the ‘bide.py’ file.

Immigration: By default, individuals enter at any point in the environment. This can can be adjusted in the
‘bide.py’ file. Species identities of inflowing propagules are chosen at random from a uniform distribution
rather than an ecologically realistic source pool (e.g., log-series or lognormal distribution). The reason for this
is two-fold. First, pulling immigrants from a uniform distribution maximizes the starting diversity of each
model. Second, beginning with a uniform distribution allows realistic distributions of species abundances to
emerge, rather than enforcing them.

Dispersal: Active dispersal: Individuals can actively move against a force of flow, at random, or in specified
directions. Preferences for particular modes of active dispersal can be specifed or modified in the ‘ac-
tive_dispersal.py’ file. Passive dispersal: Individuals can be moved passively (e.g., as planktonic organisms)
through the system at rates determined by the environmental rate of flow.

Consumption: Sampled individuals increase their levels of endogenous resources by feeding on resource
particles. These endogenous resources can be used to add structural biomass and to pay the energetic costs
of life history processes. Individuals consume resources according to their species-specific consumption rates
for three resource types. The number of simulated resource types can be changed in the source code files
(bide.py, resource_inflow.py).

Growth: Sampled individuals grow in size by integrating endogenous resources as structural biomass. Indi-
viduals grow according to species-specific rates of growth ranging between 0.1% and 100% increase in size
per time step. Individuals’ endogenous resources are decreased in direct proportion to their growth.

Reproduction: Individuals reproduce clonally, similar to that of many ecological IBMs and models (e.g.,
Hubbell 2001, Tilman 2004, Rosindell et al. 2015). Reproduction occurs with a probability determined
by individuals’ endogenous resources. The endogenous resources of the mother individual is evenly divided
between two daughters. Unless in the case of speciation, the daughters are given a unique individual ID and
the species ID of the mother.

Speciation: Speciation is simulated within Emergence as a discrete event, similar to models of ecological neu-
tral theory (e.g., Hubbell 2001), i.e., where clonal reproduction produces a new species. However, speciation
in Emergence is accompanied by mutations in the values of one or more species traits. This approach allows
for diversity to arise within the system, which the environment can then select on.

Death: Individuals sampled at random will die if their levels of endogenous resources or ability to draw
resources from structural biomass falls below the minimum metabolic requirements. Dead individuals are
removed from the system, i.e., scavenging and recycling do are not currently occur implemented in Emergence.

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.1469v3 | CC BY 4.0 Open Access | rec: 11 Apr 2017, publ: 11 Apr 2017



Emigration: Individuals are considered to have emigrated when they pass beyond edges of the environment.
That is, individuals do not reenter.

Simulating resource processes

Supply/inflow: Resource particles can be allowed to enter at any point in the environment, which can be
adjusted in the ‘bide.py’ file. The size and type of each inflowing resource particle is chosen at random from
a uniform distribution, and can be modified in the same ‘bide.py’ file.

Resource dispersal: Resource particles can be moved passively through the system at rates determined by
the rate of flow. Resource dispersal can be turned off in the ‘main.py’ file.

Resource depletion: Resource particles are depleted through consumption, which can be partial or complete.

Design concepts

Basic principles Ecological selection on random variation: Emergence operates according to a basic prin-
ciple of evolution, i.e., natural selection on random variation. Emergence assembles models from random
combinations of system-level, species-level, and individual-level variables. Emergence then allows the envi-
ronmental characteristics (e.g., flow rate, resource supply, spatial extent) to select on these random trait
combinations.

Energy-limited life history: Emergence imposes energetic costs to growth and activity. These energetic costs
are directly proportional to life history parameters. For example, the energetic cost of dispersal is the
product of dispersal rate and dispersal distance. This intuitively means that the energetic cost of dispersal is
multiplied (or compounded) across distance such that moving a distance of x in a specific direction requires
half the energy as moving a distance of 2x in the same direction. In the same way, growing at a rate of x is
half as costly as growing at a rate of 2x.

Lognormal dynamics: Multiplicative interactions of random variables underpin one of the most successful
models of complex systems, i.e., the lognormal (Crow et al. 1988). The lognormal was introduced to
ecologists by Preston (1962) as a description of how abundance varies among species. The lognormal has
been one of the two most successful models of species abundance for macroscopic plants and animals, and
was recently used to form a macroecological theory of microbial diversity (Shoemaker et al. 2017). By
“multiplicative interactions” one simply means that two or more variables interact in a multiplicative or
synergistic way. Such interactions are common in ecology and include population growth and energetic
costs multiplied across distance and time (Putnam 1993). By “random variables” one simply means two
independent processes or constraints with degrees of stochastic change. Emergence explicitly simulates
lognormal dynamics. For example, energetic costs are multiplied across dispersal distance and magnitudes
of growth and the frequency of transition between metabolic states. These energetic costs are determined
by the values of randomly chosen species traits (i.e., random variables).

Simultaneous emergence: A popular advantage of IBMs is the potential to study the emergence of complex
patterns from the individual level. Emergence is aimed at allowing emergence in three ways that IBMs
are rarely employed. First, Emergence allows patterns to emerge from random combinations of traits and
state variables. This allows realistic trait syndromes and patterns to emerge without being forced. Second,
Emergence allows orders of magnitude in random variation of starting conditions and species traits. The
degree of variation can be changed in the ‘immigration’ function located in the ‘bide.py’ file. This highly
unconstrained approach allows the user of Emergence to explore a broad spectrum of trait combinations and
ecological solutions. Third, Emergence allows for the study of simultaneous emergence across a practically
unlimited number of IBMs. In this way, Emergence initiates with unrealistic ecological communities and
unrealistic combinations of species traits, and then allows for realism to develop over time in response to
environmental conditions and according to energetic costs. This approach allows the user of Emergence to
avoid one of the greatest challenges to ecological modeling, i.e., the circularity of documenting outcomes
that are otherwise forced to occur or are excluded from occurring. The code made available for the analysis
of Emergence data is intended to examine the variation and central limiting behavior of ecological patterns
among thousands of models.
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Other design concepts of the ODD protocol Hypotheses: These are entirely up to the user to formulate
and test according to the capabilities and tools of Emergence source code.

Learning: Currently, there is no aspect of individual-based learning in Emergence.

Prediction: Individuals in Emergence do not presently have the ability to anticipate conditions.

Sensing: Individuals can sense and move towards resource particles.

Interaction: Individuals interact through excluding each other from resources, i.e., preemption. There is no
explicit communication and because there is presently no trophic structure, there are no trophic interactions.

Observation: An unlimited number of Emergence models can be run to examine trends and variation in
ecological patterns.

Output data

Emergence generates three files of output data. Each Emergence model quantifies and writes output data
for every nth time step, where n can be designated by the user. The three are:

SimData.csv – Each column of this file corresponds to a piece of data about the system that was modeled
(e.g., flow rate, total abundance, species richness, species turnover, resource supply and diversity, rate of
disturbance, etc.). Most analyses in Emergence source code are conducted on the data in this file. The
following is recorded for each Emergence model and stored in SimData.csv:

• Values of randomly chosen input variables

– length, width, flow rate
– maximum resource particle size
– maximum number of inflowing resource particles
– number of inflowing resource types
– initial community size

• Total individual abundance (N) of dormant and active fractions
• Species richness (S) of the dormant and active fractions
• Mean per capita specific growth rate for the dormant and active fractions
• Mean per capita specific dispersal rate for the dormant and active fractions
• Mean per capita specific resource consumption rates for the dormant and active fractions
• Mean per capita specific rate of random metabolic state transitions (dormant to active) for the dormant

and active fractions
• Mean per capita specific rate of decrease in basal metabolic rate accomplished by transitioning to a

dormant state, for the dormant and active fractions
• Species turnover: Whittaker’s β
• Species evenness

– Smith and Wilson’s evenness, Evar

– Simpson’s evenness, E1/D

• Species diversity

– Shannon’s diversity, H ′

– Simpson’s diversity, D1/D

• Dominance

– Absolute, Nmax

– Relative, Nmax/N

• Productivity of individuals and biomass
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SAR.csv – A file holding results for species-area relationships (SARs) from Emergence models. SARs
quantify the rate at which species are encountered with increasing area of a sample, study, landscape, etc.
The SAR is among the most intensively and long-studied patterns in ecology and is one of two patterns
commonly predicted by biodiversity theories (Lomolino 2000, Hubbell 2001, Harte 2011). The SAR file
holds z-values for two types of SARs: SARs based on a nested design and SARs based on the random
accumulation of subplots (or quadrats).

RADs.csv – A file holding rank-abundance distributions (RADs) from Emergence models. Also referred
to as species-abundance distributions (SADs), rank-abundance curves (RACs), and Whittaker plots, RADs
are vectors of the abundances of species in a community. Along with the SAR, RADs are one of the most
intensively studied and commonly predicted ecological patterns (Hubbell 2001, McGill et al. 2007, Harte
2011).

Patterns generated by Emergence

Emergence includes python code to analyze the simultaneous emergence of ecological patterns.

Species abundance distribution (SAD) The SAD is the vector of species abundance in an ecological
community and is one of ecology’s fundamental patterns of commonness and rarity. SAD’s almost universally
reflect that few species in ecological communities are highly abundant while most species are relatively rare
(McGill et al. 2007). The SAD is predicted by more than 20 ecological models, the two most successful of
which are the Poisson-lognormal and the log-series distributions (White et al. 2012, Baldridge et al. 2015,
Shoemaker et al. 2017).

Species-area relationship (SAR) Also referred to as the species-area curve, the SAR describes the rate
at which increasing numbers of species are observed with increasing area, and is also one of ecology’s most
intensively studied patterns (Rosenzweig 1995, Lomolino 2000). There four basic types of SARs pertaining
to types of biotas and four general sampling schemes (Rosensweig 1995). Here, we consider SARs for single
biotas (i.e., not crossing ecoregions or biogeographical provinces) and generate them using two sampling
schemes (i.e., nested design, random aggregation of subplots).

Metabolic scaling The scaling of basal metabolic rate (B) with body size (M) is one of the strongest
patterns of ecology (Brown et al. 2004). Taking the form B ∝ B0 ∗ Mz, the scaling exponent z is most often
observed to approach 3/4. However, this scaling exponent has long been argued to be closer to 2/3 and in
some cases can approach 1.0 (Glazier 2006). The metabolic theory of ecology (MTE) predicts that z = 3/4
and, from this, predicts several other relationships that scale to quarter powers of body size. These include
a -1/4 scaling of mass-specific metabolic rate and a -3/4 scaling of population density.

Diversity-abundance scaling relationships Aspects of species-level diversity have been shown to scale
with the total abundance (N) of individuals in a sample at rates that are often similar for microorganisms
and macroscopic plants and animals (Locey and Lennon 2016). These aspects include:

• Richness (S); the number of species in a community.
• Rarity; the concentration of species at low abundances can be quantified as the a measure of the

skewness of the histogram of species abundances.
• Absolute dominance (Nmax); the greatest species abundance.
• Evenness (E); the variation in abundance among species and often quantified as a transformation or

reflection of the sample variance.

Taylor’s Law The variance (σ2) in population abundance often scales with the average population abun-
dance (N/S) across space and through time at a rate between 1 and 2, i.e., σ2 � (N/S)1<z<2. Named after
Taylor (1961), Taylor’s Law is observed in many ecological and non-ecological systems.
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Results

Species abundance distribution (SAD) Despite the IBMs being initialized with random samples from
uniform distributions, the resulting SADs of Emergence are well-fit by the Poisson-lognormal and the log-
series distributions (Fig 1).

Figure 1. Species abundance distributions for 1,000 IBMs are well-explained by species abundance models.
Kernel density curves of r-square values for the Poisson lognormal (PLN) distribution and the log-series
predicted by the Maximum Entropy Theory of Ecology (METE). As commonly observed in ecological
communities, both models predicted >75% variation in abundance among species.

Species-area relationship (SAR) Emergence produced realistic forms of the SAR according to several
sampling schemes (Fig 2).

Figure 2. Species-area relationships (SAR) from 1,000 IBMs take realistic forms. Kernel density curves of
slopes (z-values) of the SAR for two sampling schemes: nested and random aggregation (R.A.).
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Metabolic scaling Emergence closely reproduced the 3/4 power scaling of basal metabolic rate to body size,
the -1/4 power scaling of mass-specific basal metabolic rate to body size, and the -3/4 scaling of population
density to body size (Fig 3).

Figure 3. Patterns of metabolic scaling produced by 1,000 Emergence models. Each blue data point
represent the mean for values across a binned x-axis, to prevent statistical bias due to the large number of
data points of intermediate body sizes. The dashed blue line is the regression line and the light blue hull is
the 95% prediction interval.

Diversity-abundance relationships Emergence closely reproduced diversity-abundance scaling relation-
ships (Fig 4). The relationships for rarity, dominance, and evenness are close to the overall results from
Locey and Lennon (2016). The relationship of richness to total abundance was similar to that for some
microbial and animal datasets analyzed by Locey and Lennon (2016).

Figure 4. Diversity-abundance scaling relationships produced by 1,000 Emergence models are similar to
those reported by Locey and Lennon (2016). Each blue data point represents the mean for values across a
binned x-axis. This prevents statistical bias due to the large number of data points of high total abundance
(N). The dashed blue line is the regression line and the light blue hull is the 95% prediction interval.
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Taylor’s Law Emergence reproduced Taylor’s Law, with the scaling exponent just below 2.0 (Fig 5).

Figure 5. The population abundance variance-mean relationship from 1,000 Emergence models closely
reproduces Taylor’s Law.

Discussion

The Emergence platform represents a holistic approach to the study and unification of ecological patterns
and processes. Emergence allows patterns from different ecological paradigms, theories, and subdisciplines to
emerge simultaneously across thousands of individual-based models (IBMs). These IBMs encode general life
history processes, few explicit constraints, and allow several orders of magnitude of variation in species traits
and environmental variables. In doing so, primary patterns of community ecology, macroecology, population
ecology, life history, metabolic theory, and biodiversity science emerge from the simulation of first principles:
energetic costs, ecological selection, multiplicative interactions, and stochasticity. Emergence is agnostic and
inclusive in that it does not place primary importance on any of its encoded principles and is not meant to
exclude the future addition of others (e.g., energy budgets, stoichiometry). Emergence does not place explicit
constraints on body size or life history trade-offs. Instead, we designed Emergence to allow all patterns to
emerge from randomized conditions in ways that would have been difficult to anticipate from examining the
source code.

The simultaneous emergences of ecological patterns via the Emergence platform is unprecedented. Real-
istically uneven SADs with few dominant species and many rare species, resulted from initial even SADs
where almost every individual belonged to a different species. This starting condition was intended to allow
realistic SADs to emerge and also to avoid the circularity whereby theories of biodiversity almost universally
begin with the assumption that the SAD is a hollow-curve (McGill 2010). Additionally, metabolic scaling
relationships emerged despite the lack of any explicit constraints on body size and without enforcing any
power-law mechanism related to metabolism. Likewise, realistic species area relationships (SARs) and re-
alistic diversity-abundance scaling relationships emerged despite having no hard constraints on either total
abundance or species richness. Finally, all of these patterns emerged simultaneously.

Emergence implicitly unifies major ecological patterns under the importance of life history processes and
three general mechanisms: lognormal dynamics (i.e., multiplicative interactions of stochastic variables),
energetic constraints, and ecological selection. To our knowledge, the entire set of patterns produced by
Emergence have never been predicted by any single ecological theory, nor by any synthesis of theories.
However, many other ecological patterns can also be produced by the Emergence platform, as is. Examples
are distance decay relationships, growth curves, spatial abundance distributions, body-size distributions, and
species-time relationships. Furthermore, Emergence allows exploration of novel questions and patterns while
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ensuring realistic ecological structure and dynamics. For example, one could explore interrelated changes
in the SAR and SAD while ensuring that ecological realism in terms of Taylor’s Law and metabolic scaling
are retained. One can modify the Emergence source code to include any additional number of processes,
reproductive modes, etc., while ensuring that ecological realism is maintained in other respects. With
additional modifications Emergence should produce countless other ecological patterns or even patterns that
transcend biological fields, i.e., by simulating evolutionary processes, landscape dynamics, and by attributing
genome sequences to individuals.

Emergence can be freely distributed and modified, and will continue growing to give simulated individu-
als evolvable traits and genomes and to include new ecological dynamics (e.g., predator-prey, mutualism,
parasitism) as well as the aspects of strict mass balance and stoichiometry expected with a more explicit
accounting of all mass and energy within a system. Developments to Emergence will also include greater
spatial complexity (e.g., habitat islands, archipelagos, corridors, etc.). Because Emergence is open source and
hosted on a public repository, any interested scientist can either contribute to evolution of the Emergence
platform or even use our platform as a foundation for their own study in emergence modeling.
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