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A B S T R A C T

Organisms have evolved different mechanisms in response to periods of environmental stress, including
dormancy – a reversible state of reduced metabolic activity. Transitions to and from dormancy can be
random or induced by changes in environmental conditions. Prior theoretical work has shown that stochastic
transitioning between active and dormant states at the individual level can maximize fitness at the population
level. However, such theories of ‘bet-hedging’ strategies typically neglect certain physiological features of
transitions to dormancy, including time lags to gain protective benefits. Here, we construct and analyze
a dynamic model that couples stochastic changes in environmental state with the population dynamics of
organisms that can initiate dormancy after an explicit time delay. Stochastic environments are simulated
using a multi-state Markov chain through which the mean and variance of environmental residence time
can be adjusted. In the absence of time lags (or in the limit of very short lags), we find that bet-hedging
strategy transition probabilities scale inversely with the mean environmental residence times, consistent with
prior theory. We also find that increasing delays in dormancy decreases optimal transitioning probabilities,
an effect that can be influenced by the correlations of environmental noise. When environmental residence
times – either good or bad – are uncorrelated, the maximum population level fitness is obtained given
low levels of transitioning between active and dormant states. However when environmental residence
times are correlated, optimal dormancy initiation and termination probabilities increase insofar as the mean
environmental persistent time is longer than the delay to reach dormancy. We also find that bet hedging
is no longer advantageous when delays to enter dormancy exceed the mean environmental residence times.
Altogether, these results show how physiological limits to dormancy and environmental dynamics shape the
evolutionary benefits and even viability of bet hedging strategies at population scales.
1. Introduction

Dormancy is a reversible state of reduced metabolic activity that
can protect an organism against unfavorable environmental condi-
tions including nutrient deprivation, toxins, or temperature (Nicholson
et al., 2002). Dormancy is found across the tree of life and includes
sporulation by bacteria (Sussman and Douthit, 1973), seed production
by plants (Bentsink and Koornneef, 2008), and hibernation by mam-
mals (Guppy and Withers, 1999). Despite profound differences in the
underlying physiological mechanisms, these examples each share the
common feature of dimorphism in growth, reproduction, and survival
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between the active and dormant state. These examples also differ in the
ways in which dormancy is initiated or terminated.

Transitioning in and out of dormancy can be initiated randomly,
i.e., independent of the environmental state, or as a result of an
environmental sensing mechanism. Examples of stochastic entry and
exit to and from dormancy span a variety of organisms such as persister
cells, soil microbes, and plants (Buerger et al., 2012; Balaban et al.,
2004; Manuse et al., 2021). Plants have dormant seeds which germinate
randomly, presumably to avoid transitioning during only periods that
have brief windows favorable for growth (Gremer and Venable, 2014;
Gianella et al., 2021; Serra et al., 2014). A variety of microorganisms
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employ a similar strategy in which cells exit dormancy at seemingly
random times which allows the population as a whole to sample a spec-
tra of environmental conditions (Wright and Vetsigian, 2019; Xu and
Vetsigian, 2017; Sturm and Dworkin, 2015). Stochastic entry and/or
exit from dormancy is presumed to balance the benefits of growth in
good environments while avoiding death in bad environments.

Random transitioning between active and dormant states is often
described as a bet-hedging strategy. A bet-hedging strategy refers to the
investment in multiple phenotypes to reduce the potential loss suffered
in future harsh environments, thereby increasing long-term or geo-
metric mean fitness. Early work on bet-hedging theory was motivated
by analysis of optimal betting strategies in (human) gambling (Kelly,
1956). As derived by Kelly (1956), the optimal betting strategy is
one that decreases the variance of possible outcomes by maximizing
the logarithm of the expected growth in wealth. The ‘Kelly’ optimal
criterion was used to show that the optimal phenotypic switching
rate should match the stochastic rate of environmental switching so
as to maximize the long-term Malthusian growth rate of replicating
cells (Kussell and Leibler, 2005). This approach has also been applied to
compute the optimal life history outcomes for bacteriophage infections,
given an analogy between dormancy and prophage integration and
between active states and phage lysis of hosts (Maslov and Sneppen,
2015).

Prior modeling efforts have tended to assume instantaneous switch-
ing between phenotypes when identifying the optimal rates of dor-
mancy initiation and/or termination. In reality, transitioning between
active and dormant can take a substantial amount of time, comparable
to or even longer than an individual’s generation time. For example,
spore-forming Bacillus subtilis has a generation time of 0.5 h in rich

edia but it takes an individual bacterium several hours to initiate and
ransition into a dormant state (Sella et al., 2014; Mutlu et al., 2018).
or other types of microbial dormancy, such as quiescence in persister
ells or tumor cells, the time to reach dormancy is not as clearly
efined, though it is often on the order of a replication cycle given
he necessary changes in morphology and gene expression (Rittershaus
t al., 2013). Hence, the time to reach dormancy varies by organism but
till poses a significant opportunity cost. Depending on environmental
luctuations, delays in phenotypic switching could change the benefits
nd risks associated with a bet-hedging strategy.

In this paper, we extend the framework of bet-hedging models to
xplore the dynamic consequences of delays in reaching dormancy
n both stochastic and predictable environments. Using Kelly’s insight
f maximizing the expected logarithmic wealth we optimize for the
yapunov exponent or equivalently for the expected long-term growth
ate of the population. By using a multi-state Markov chain to simulate
nvironments we can vary environmental simulations from memory-
ess to periodic-like. Consistent with previous work, we find that when
henotypic switching is instantaneous then optimal transitioning scales
nversely with mean environmental residence time. However, when
ransitioning to dormancy takes additional steps and thus requires more
ime, the magnitude of optimal switching drops dramatically. Assessing
et hedging in the context of realistic delays and correlated environ-
ents can help deepen understanding of the drivers and constraints on

he evolution of dormancy in biological systems.

. Methods

.1. Summary

We propose a discrete stochastic model inspired by bet-hedging
heory to compute the long-term fitness of a population in stochastic
nvironments with two states: good or bad (see Fig. 1). Individuals can
e active, dormant, or in transition from an active to a dormant state
Fig. 1 B). In this model, dormancy represents a metabolically inactive
tate invulnerable to environmental stressors, hence dormant individu-
ls do not reproduce or die. Active individuals reproduce during good
2

times, but have a constant death factor during bad times. Transition
states represent the biological stages required to reach a fully developed
dormant state. Therefore individuals in transition states are unable to
reproduce but are also not protected from mortality and die during
unfavorable environmental times. The transition states occur only from
active to dormant states, with the inverse switch from dormant to
active always taking one time step. This asymmetry is inspired by the
relatively long period of generation of bacterial spores relative to their
reactivation (Mutlu et al., 2018).

We use a Markov chain to model the environmental conditions
(Fig. 1 C, D) and to vary the correlation between time steps. We refer to
the duration during which environments remain constant as the good or
bad residence time. Because we choose the environmental parameters
such that the residence time distribution is the same for good or bad
environments, we use the term residence time to refer to both the good
and bad times. By varying the switching probability and the number of
intermediate states in the extended environment model we can control
the mean and shape of the residence time distribution. The population
and environmental models are coupled as the reproduction and death
factors in the dormancy model are dependent on the environmental
state.

2.2. Dormancy model

We consider a two-state model in which individuals transition be-
tween active and dormant with initiation probability 𝑥 and resuscita-
tion probability 𝑦 (Fig. 1 A, B). Active individuals have a growth factor
of 𝑟 during good times and 𝑑 during bad times. Dormant individuals are
sheltered during bad times and cannot reproduce during good times.
The transition states between active and dormant represent the delay
it takes for active individuals to reach full refuge in dormancy (Fig. 1
B). Individuals in transition states do not reproduce but are susceptible
to bad environments just like active individuals. These transition states
are labeled 𝐼1, 𝐼2,… , 𝐼𝑛 with corresponding transitioning probabilities
𝑖1, 𝑖2,… , 𝑖𝑛. Given a stochastic sequence of environmental conditions
{𝐸1, 𝐸2,… , 𝐸𝑛} we can write a set of equations describing the number
of active, transitioning, and dormant individuals as follows:

Two-state model

𝐴(𝑡 + 1) = 𝐸(𝐴,𝐸𝑡+1) ⋅
[

(1 − 𝑥) ⋅ 𝐴(𝑡) + 𝑦 ⋅𝐷(𝑡)
]

(1)

(𝑡 + 1) = 𝑥 ⋅ 𝐴(𝑡) + (1 − 𝑦) ⋅𝐷(𝑡) (2)

Multi-state model

𝐴(𝑡 + 1) = 𝐸(𝐴,𝐸𝑡+1) ⋅
[

(1 − 𝑥) ⋅ 𝐴(𝑡) + 𝑦 ⋅𝐷(𝑡)
]

(3)

1(𝑡 + 1) = 𝐸(𝐼, 𝐸𝑡+1) ⋅
[

𝑥 ⋅ 𝐴(𝑡) + (1 − 𝑖1) ⋅ 𝐼1(𝑡)
]

(4)

2(𝑡 + 1) = 𝐸(𝐼, 𝐸𝑡+1) ⋅
[

𝑖1 ⋅ 𝐼1(𝑡) + (1 − 𝑖2) ⋅ 𝐼2(𝑡)
]

(5)
...

𝐼𝑛(𝑡 + 1) = 𝐸(𝐼, 𝐸𝑡+1) ⋅
[

𝑖𝑛−1 ⋅ 𝐼𝑛−1(𝑡) + (1 − 𝑖𝑛) ⋅ 𝐼𝑛(𝑡)
]

(6)

𝐷(𝑡 + 1) = 𝑖𝑛 ⋅ 𝐼𝑛(𝑡) + (1 − 𝑦) ⋅𝐷(𝑡) (7)

here 𝐸(𝑋,𝐸𝑡) gives the multiplication factor for state 𝑋 ∈ {𝐴, 𝐼}
ased on environmental condition 𝐸𝑡 as follows:

(𝐴,𝐸𝑡) =

{

𝑟, if 𝐸𝑡 = 𝐺𝑜𝑜𝑑
1 − 𝑑, if 𝐸𝑡 = 𝐵𝑎𝑑

and

𝐸(𝐼, 𝐸𝑡) =

{

1, if 𝐸𝑡 = 𝐺𝑜𝑜𝑑
1 − 𝑑, if 𝐸𝑡 = 𝐵𝑎𝑑.

(8)

The conditions for 𝐸(𝑋,𝐸𝑡) are shown in Fig. 1 A and B through the red
and green arrows. Note that 𝑑 ∈ [0, 1] since it represents the fraction of
the susceptible population which dies during bad environmental times
and 𝑟 needs to be greater than 1 for the population to have a positive

growth. The exact values we use for 𝑟 and 𝑑 are shown in Table 1.
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Fig. 1. Schematic of dormancy and environmental models. A and B Compartmental model of active individuals A and dormant individuals D. Initiation probability is 𝑥 and
resuscitation probability is 𝑦. The green arrows represent the growth factors 𝑟 during good times and red arrows represent the death factors 𝑑 during bad times. The growth factor
is not a probability and is the only parameter with a value greater than one. While active individuals grow during good times and are susceptible to bad times, dormant individuals
are not affected by environmental conditions. A. Classical two-state dormancy model where transitioning between A and D is done in one time step. B. Extended multi-state model
where transitioning between A and D involves passing through 𝑛 transition states 𝐼1 , 𝐼2 ,… , 𝐼𝑛 with probabilities 𝑖1 , 𝑖2 ,… , 𝑖𝑛. All transition states are vulnerable to bad environments,
but cannot grow during good environments.C. Environments switch between good (G) and bad (B) based on a two-state Markov chain with switching probabilities 𝛼 and 𝛽.
D. Environments switch between good (G) and bad (B) by passing through all intermediate states 𝐺1 , 𝐺2 ,… , 𝐺𝜅 and 𝐵1 , 𝐵2 ,… , 𝐵𝜅 . There are 𝜅 good and 𝜅 bad states and the
probability to advance through each state is 𝛼𝜅 and 𝛽𝜅, respectively. This is a multi-state Markov chain and is an extension of the model in panel A.
Table 1
Model variables.
Variable name Description Interpretation Value

𝜏 = 𝛼−1 = 𝛽−1 Mean residence time Inverse environmental switching probability [2, 4, 6, 8, 10, 20]
𝜅 Minimum residence time Environmental predictability [1,2, 𝜏-2, 𝜏-1]
𝑛 Number of dormancy transition states Delay to reach dormancy [0,1,2,4,6,8,10]
𝑥 Dormancy initiation probability Bet-hedging investment 0 ≤ 𝑥 ≤ 1
𝑦 Dormancy resuscitation probability Bet-hedging investment 0 ≤ 𝑦 ≤ 1
𝑑 Death factor Bet-hedging risk 0.5
𝑟 Growth factor Bet-hedging reward 2
In this work we set 𝑖1 = 𝑖2 = ⋯ = 𝑖𝑛 = 1 meaning 𝑛 transition
states add a delay of 𝑛 time steps to go from active to dormant. It is
ssumed that individuals in transition states cannot reproduce during
ood times, but are vulnerable to bad times and have the same death
actor as active individuals. The possible values for 𝑛 are shown in

Table 1.

2.3. Environmental model

Environments change between good and bad following a Markov
process shown in Fig. 1, where the baseline model in Fig. 1 C represents
a two-state Markov chain with switching between good and bad states
and the extended model in Fig. 1 D is a multi-state Markov chain
with additional states. These additional states are good or bad and
individuals grow or die based on the same rules as in the two-state
3

model. By introducing these intermediate states, different types of
residence time distributions in good/bad states can be achieved. If we
denote with 𝐸𝑡 the environment at time 𝑡, we can write the equations
for the Markov chains in Fig. 1 as follows:

Two-state model

𝑃
(

𝐸𝑡+1 = 𝐵|𝐸𝑡 = 𝐺
)

= 𝛼 𝑃
(

𝐸𝑡+1 = 𝐺|𝐸𝑡 = 𝐵
)

= 𝛽

𝑃
(

𝐸𝑡+1 = 𝐺|𝐸𝑡 = 𝐺
)

= 1 − 𝛼 𝑃
(

𝐸𝑡+1 = 𝐵|𝐸𝑡 = 𝐵
)

= 1 − 𝛽

Multi-state model

𝑃
(

𝐸𝑡+1 = 𝐺𝑖+1|𝐸𝑡 = 𝐺𝑖
)

= 𝛼𝜅 𝑃
(

𝐸𝑡+1 = 𝐵1|𝐸𝑡 = 𝐺𝜅
)

= 𝛼𝜅

𝑃
(

𝐸𝑡+1 = 𝐺𝑖|𝐸𝑡 = 𝐺𝑖
)

= 1 − 𝛼𝜅 𝑃
(

𝐸𝑡+1 = 𝐺𝜅 |𝐸𝑡 = 𝐺𝜅
)

= 1 − 𝛼𝜅

𝑃
(

𝐸𝑡+1 = 𝐵𝑖+1|𝐸𝑡 = 𝐵𝑖
)

= 𝛽𝜅 𝑃
(

𝐸𝑡+1 = 𝐺1|𝐸𝑡 = 𝐵𝜅
)

= 𝛽𝜅

𝑃
(

𝐸𝑡+1 = 𝐵𝑖|𝐸𝑡 = 𝐵𝑖
)

= 1 − 𝛽𝜅 𝑃
(

𝐸𝑡+1 = 𝐵𝜅 |𝐸𝑡 = 𝐵𝜅
)

= 1 − 𝛽𝜅,
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Fig. 2. Probability density function of environmental residence time. Each of the four plots shows the probability mass function (PMF) of residence time with the same mean
residence time parameter 𝜏 = 6 and different values of minimum residence time 𝜅 between 1 and 5. Simulations of environments have 5000 time steps and are shown in the blue
histogram. The mean residence time of the simulated environments is shown with a dotted blue line. A theoretical function computing the PMF based on the Markov process in
Fig. 1 D is shown in orange.
where 𝐺 and 𝐵 are the good and bad environmental states in the
two state model and 𝐺𝑖 and 𝐵𝑖 are the 𝑖th good and bad state in the
multi-state model. Both Markov chains have a steady-state distribution

[𝐺∗, 𝐵∗] =
[ 𝛽
𝛼 + 𝛽

, 𝛼
𝛼 + 𝛽

]

, (9)

meaning that on average the environment will be good 𝛽
𝛼+𝛽 of the

time and bad 𝛼
𝛼+𝛽 of the time. We maintain the fraction of bad times

equal to the fraction of good times by setting 𝛼
𝛼+𝛽 = 𝛽

𝛼+𝛽 = 0.5 ⟺

𝛼 = 𝛽, although the environmental switching probabilities 𝛼 and 𝛽
can be changed independently between 0 and 1 to obtain different
values for 𝛼

𝛼+𝛽 and 𝛽
𝛼+𝛽 . We can vary 𝛼 = 𝛽 between 0 and 1 to

obtain fast switching environments for higher values or slow switching
environments for lower values.

In the two-state model, the environmental residence times are dis-
crete random variables following exponential probability mass func-
tions with mean 𝛼−1 and 𝛽−1 respectively. For simplicity, we set the
number of intermediate states to be the same in the good and bad states
𝜅. Because 𝛼 = 𝛽, let 𝜏 be the average length of time environments
remain constant. As we increase the number of intermediate states 𝜅,
i.e. delays, in the multi-state model, the distribution of environmental
residence time becomes more narrow but maintains the same mean
𝜏 (Fig. 2). Note that minimum residence time 𝜅 is anti correlated to
the variance of residence time. When 𝜅 increases environments become
more predictable and the distribution of residence time becomes more
narrow (Fig. 2). We distinguish the following two parameters which we
will use from now on to describe environmental conditions:

i. Mean residence time (or the inverse of environmental switching
probability) 𝜏 = 𝛼−1 = 𝛽−1

ii. Minimum residence time or the number of intermediate environ-
mental states 𝜅.

The multi-state model includes a key constraint. Because all additional
states need to be traversed to switch environments, we restrict our
attention to models where 𝜏 > 𝜅.

Given that 𝜏 = 𝛼−1 = 𝛽−1, 𝜅 has an upper limit of 𝛼−1 = 𝛽−1 and
when that limit is reached environments are no longer stochastic. If
the mean and minimum of the residence time distribution are equal,
environments remain constant for exactly 𝜏 = 𝜅 time steps and are
thus periodic. In this work we use 𝜏 ∈ {2, 4, 6, 8, 10, 20} and 𝜅 ∈
{1, 2, 𝜏 − 2, 𝜏 − 1} as described in Table 1. Additionally given 𝜏 > 𝜅,
not all pairs of (𝜏, 𝜅) are feasible. The unfeasible cases, e.g. 𝜏 = 2 and
𝜅 = 2 are shown as ‘unfeasible’ in figures.

2.4. Expected Lyapunov exponent

To compute the expected logarithmic growth rate, we use the
Lyapunov exponent formula as a proxy for fitness:

𝑟 = 1 log
(

𝑁(𝑡)
)

(10)
4

𝑡 𝑁(0)
where 𝑁(𝑡) = 𝐴(𝑡) + 𝐼1(𝑡) +⋯+ 𝐼𝑛(𝑡) +𝐷(𝑡) in the multi-state model and
𝑁(𝑡) = 𝐴(𝑡) + 𝐷(𝑡) in the two-state model. Generally 𝑁(𝑡) represents
the total size of the population at time 𝑡. A value of 𝑡 = 500 time
steps is used. We compute the Lyapunov exponent 1000 times for
different simulations of the environment and take the mean to obtain
the expected value.

2.5. Code availability

All simulations were carried out in MATLAB v 2020a. Scripts are
available on Github at https://github.com/WeitzGroup/Bet_hedging_
dormancy.

3. Results

3.1. Population dynamics and fitness change based on dormancy transition-
ing probabilities

We first evaluate how populations with different initiation and
resuscitation probabilities grow and die in a stochastic environment
using the two-state dormancy model. A stochastic environment of 50
time steps is simulated based on the Markov model in Fig. 1 A with
values of 𝛼 = 𝛽 = 0.5. The population dynamics are shown in Fig. 3
A for three values of transitioning probabilities between 0 and 1.
Populations grow during good times (green shading) and die during bad
times (red shading). Each of the different populations has a fitness value
calculated via the associated Lyapunov exponent shown in Fig. 3 B.
Fig. 3 B also shows the Lyapunov exponent for a range of transitioning
probabilities between 0 and 1 and note that the population with 𝑥 =
𝑦 = 0.5 yields the highest fitness.

By varying (𝑥, 𝑦) ∈ [0, 1]2 we generate a fitness map based on the
initiation probability on the 𝑥-axis and resuscitation probability on
the y-axis (Fig. 4 enlarged heatmap). This fitness map is concave and
has a global maximum (𝑥∗, 𝑦∗) = (0.5, 0.5) shown with a red mark.
The pair (𝑥∗, 𝑦∗) = (0.5, 0.5) are the optimal transitioning probabilities
which maximize the fitness of the population given parameters 𝜏 = 2,
𝜅 = 1 and delay 𝑛 = 0. The optimal solution can also be computed
analytically by expanding the Lyapunov exponent and finding that the
highest fitness is obtained when 𝑥∗ = 𝛼

𝛼+𝛽 ⋅ 𝑟
𝑟−1 = 0.5 (Maslov and

Sneppen, 2015) . This analytical approach however does not hold for
any other values of 𝑛, 𝜅 or 𝜏, hence we need a computation approach
to compute 𝑥∗, 𝑦∗ for the remaining conditions. Fitness maps are shown
in the rest of Fig. 4 for different values of mean residence time 𝜏
and minimum residence time 𝜅. Notice that all the fitness maps in
Fig. 4 are concave, hence we obtain an optimal pair of dormancy
transitioning probabilities for each value of 𝜏 ∈ {2, 3, 4, 5, 6, 7} and
𝜅 ∈ {1, 2, 3, 4, 5, 6}. These results suggest that the fitness of a population
is smooth with respect to the initiation and resuscitation probability
and monotonically decreases as (𝑥, 𝑦) pair is further away from the
optimal value.

https://github.com/WeitzGroup/Bet_hedging_dormancy
https://github.com/WeitzGroup/Bet_hedging_dormancy
https://github.com/WeitzGroup/Bet_hedging_dormancy


Journal of Theoretical Biology 561 (2023) 111413

5

A. Măgălie et al.

Fig. 3. Population dynamics and Lyapunov exponent in the two-state dormancy model A. Three populations with different initiation 𝑥 and resuscitation 𝑦 probabilities are shown
in blue lines and environmental conditions are shown in red and green shaded areas which are also labeled G or B. The environmental and dormancy models used here are the
two-state models from Fig. 1 panels A and C, respectively, with 𝜏 = 𝛼−1 = 𝛽−1 = 2. B. The corresponding Lyapunov exponent for each of the blue lines in panel A is shown for
𝑥 = 𝑦 transitioning probabilities on the 𝑥-axis. The formula used to compute the Lyapunov exponent is shown in Eq. (10).

Fig. 4. Fitness maps for no delays dormancy when varying mean and minimum residence time Each heatmap shows the Lyapunov exponent based on the initiation probability on
the 𝑥-axis and resuscitation probability on the 𝑦-axis. The maximum fitness is marked with a red x. The simulations are done for mean residence time 𝜏 ∈ {2, 3, 4, 5, 6, 7}, minimum
residence time 𝜅 ∈ {1, 2, 3, 4, 5, 6} and no delays between active and dormant states (𝑛 = 0). Because 𝜏 ≥ 𝜅 the bottom right part of the figure is not feasible. Instead a magnified
version of the 𝜏 = 2, 𝜅 = 1 heatmap is shown. The values for transitioning probabilities are between 0 and 1 with an increment of 0.025 and a total of 500 runs is used for each
heatmap. In each case, the Lyapunov exponent shown is the average of the exponent for each run.
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Fig. 5. Impact of the mean residence time 𝜏 and minimum residence time 𝜅 on optimal transitioning with no delays A and B. Optimal transitioning 𝑥∗ and 𝑦∗ are computed
based on the location of the red 𝑥 in Fig. 4 and shown against the mean residence time 𝜏 in panel A and against the minimum residence time 𝜅 in panel B. Note that 𝑥∗ = 𝑦∗,
hence one plot is representative of both optimal initiation and resuscitation probabilities. The optimal transitioning is shown for each value of 𝜅 in A and 𝜏 in B, with lower
values of 𝜅 and 𝜏 being more opaque. The missing data points in both panels correspond to the case of 𝜅 ≥ 𝜏, specifically when 𝜏 = 2 and 𝜅 ∈ {2, 𝜏 − 2, 𝜏 − 1}. The theoretical
estimate from Kussell and Leibler (2005) is the inverse of the environmental times and is shown in a dashed line. The dormancy model considered is a two-state model with no
delays when individuals transition from A and D.
3.2. Optimal transitioning in the two-state dormancy model based on resi-
dence time distributions

We evaluate the relationship between optimal transitioning proba-
bilities identified in the prior section against the environmental resi-
dence time. Because transitioning into dormancy is instantaneous, we
expect to find that optimal transitioning probabilities scale inversely
with mean residence time (Kussell and Leibler, 2005). We show the
optimal pairs of dormancy transitioning probabilities identified in Fig. 4
as a function of 𝜏 in Fig. 5 A and as a function of 𝜅 in Fig. 5 B. First we
note that the optimal initiation is equal to the optimal resuscitation,
hence only one line is used to show 𝑥∗ = 𝑦∗. Optimal transitioning
decreases with 𝜏, suggesting an inverse relationship between mean
residence time 𝜏 and transitioning probabilities (Fig. 5 A). We also note
that the optimal transitioning probabilities are closer to the theoretical
inverse estimate as 𝜅 increases, i.e., this inverse relationship strength-
ens as environments become more predictable. For higher values of 𝜅 ∈
{𝜏−2, 𝜏−1} the optimal transitioning approaches 𝜏−1. This observation
is consistent with previous findings that optimal phenotypic switching
rates are equal to the inverse of environmental times in the limit of
sufficiently stable environments (Kussell and Leibler, 2005).

We also evaluate the impact of the minimum residence time 𝜅 on
the optimal transition probabilities (Fig. 5 B). As 𝜅 increases, the vari-
ance of environmental residence times decreases. Optimal transitioning
probabilities increase as environments are more predictable and this
observation is stronger for faster switching environments, i.e., for lower
values of 𝜏. Thus, in the absence of delays, the shape of the residence
time distribution affects the optimal bet-hedging strategy only when
environments switch frequently between good and bad times.

3.3. Delays to reach dormancy reduce the fitness and optimal transitioning
probabilities in a population

We next investigate how delays to reach dormancy affect a popu-
lation by using the multi-state dormancy model introduced in Fig. 1
D. Whereas in previous sections we used a dormancy model with no
delays, we compute the Lyapunov exponents for delay 𝑛 = 1 and
show the results in Fig. 6. Note that Figs. 4 and 6 are identical aside
from variation in the delay time to dormancy 𝑛. When comparing the
heatmaps with and without dormancy, we note that the addition of
6

one time step to reach dormancy reduces the population fitness for all
values of 𝜅 and 𝜏. When comparing the enlarged heatmaps for 𝜏 = 2, 𝜅 =
1, the addition of one delay reduces the highest possible fitness by about
50% and the optimal transitioning probabilities decrease 10-fold from
(𝑥∗, 𝑦∗) = (0.5, 0.5) to (𝑥∗, 𝑦∗) = (0.05, 0.05). Overall, the inclusion of
delays to reach dormancy significantly reduces the long-term growth
and leads to lower optimal transitioning probabilities throughout the
parameter space explored in 𝜏 − 𝜅.

Building on this finding, we compute the optimal transitioning
probabilities for other values of 𝜏, 𝜅 and 𝑛 and show that delays to
reach dormancy 𝑛 have a stronger effect on the fitness when the mean
residence time 𝜏 is higher (Fig. 7). We note that the optimal initiation
is equal to the optimal resuscitation within a small tolerance of 0.025
in the transitioning probability, likely due to stochastic effects, hence
we show only one line for 𝑥∗. Both the initiation and resuscitation
probabilities decrease as delays to reach dormancy increase until the
optimal transitioning becomes 𝑥∗ = 𝑦∗ = 0 when the delays are too high
(Fig. 7 A). This trend holds for all values of 𝜏, however the reduction in
optimal transitioning is more drastic for faster changing environments
with lower mean residence time. The associated Lyapunov exponent
also decreases as delays increase from almost 0.15 when 𝑛 = 0 to ≈ 0.01
when 𝑛 = 10 (Fig. 7 B). Altogether our findings suggest that increasing
delays to reach dormancy decrease long-term fitness and decrease the
optimal transitioning probability between active and dormant states.

3.4. Optimal transitioning increases with environmental predictability (𝜅)
unless delays (𝑛) are too large

In this last section we investigate the combined effect of residence
time distribution and delays to reach dormancy on optimal transi-
tioning and long-term fitness. To do so, we compute the optimal
transitioning probabilities for all values of 𝜏, 𝜅 and 𝑛 in Fig. 8 and group
the results in 4 panels based on minimum residence time 𝜅. As the value
of 𝜅 increases, environments become more predictable. As before, we
find that 𝑥∗ = 𝑦∗ within a small tolerance of 0.025 for all values of 𝜅, 𝜏
and 𝑛.

First we make note of results that are consistent with the ones from
previous sections, but hold true for a larger range of parameters. Con-
sistent with the results in Section 3.3, optimal transitioning decreases
as delays increase and this remains valid for all values of 𝜏 and 𝜅.
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Fig. 6. Fitness maps for multi-state dormancy model when varying mean and minimum residence time Similar to Fig. 4, each heatmap shows the Lyapunov exponent based on
the initiation probability on the 𝑥-axis and resuscitation probability on the 𝑦-axis. The only difference from 4 is that the dormancy model used here has one additional transition
state (𝑛 = 1). The same values are used for 𝜏 and 𝜅 and a magnified version of the 𝜏 = 2, 𝜅 = 1 heatmap is shown in the unfeasible area. The values for transitioning probabilities
are between 0 and 1 with an increment of 0.025 and a total of 1000 runs is used for each heatmap.

Fig. 7. Effects of delays to reach dormancy on highest fitness and optimal transitioning probabilities A. Optimal transitioning probabilities are computed for all values of 𝜏, 𝜅
and delays and plotted against the delays to reach dormancy on the 𝑥-axis. Note that 𝑥∗ = 𝑦∗ within a small tolerance of 0.025, hence one plot is representative of both optimal
initiation and resuscitation probabilities. The optimal transitioning is shown for several values of 𝜏, with lower values of 𝜏 being more opaque. B. The corresponding fitness for
the optimal transitioning probabilities is shown against the delay to reach dormancy on the 𝑥-axis. The fitness is shown for the same values of 𝜏 as in panel A, with lower values
of 𝜏 being more opaque. Both panels use a value of 𝜅 = 𝜏 − 2 and the value of 𝜏 = 2 is omitted since it is unfeasible.
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Fig. 8. Optimal transitioning for all values of 𝜏, 𝜅 and delays to reach dormancy Each of the four maps shows the optimal transitioning probabilities based on the delay to reach
dormancy 𝑛 on the 𝑥-axis and mean environmental residence time 𝜏 on the 𝑦-axis. Each panel has a different environmental predictability with increasing values of 𝜅 from left
to right. Given the constraint of 𝜏 > 𝜅, unfeasible areas are left white. The magenta line in each panel represents the delimitation between 𝜏 + 2 and 𝑛: above the line 𝜏 + 2 > 𝑛
and below 𝜏 + 2 ≤ 𝑛. The equation 𝜏 + 2 = 𝑛 describes the situation in which the time to reach dormancy is most likely equal to the environmental residence time. The values for
transitioning probabilities are between 0 and 1 with an increment of 0.025 and a total of 1000 runs is used to find each optimal value.
We also notice that, similar to the results discussed in Section 3.2,
transitioning probabilities are more dependent on the mean residence
time 𝜏 as the value of 𝜅 is higher. Optimal transitioning probabilities
tend to be equal to the smallest nonzero value for lower values of 𝜅 of 1
or 2. However when 𝜅 is higher there is a stronger correlation between
𝑥∗ = 𝑦∗ and both the environmental residence time and the delay to
reach dormancy, 𝜏 and 𝑛, respectively. Indeed when 𝜅 = 1, all but four
optimal transitioning values are equal to 0.05 or 0.025, whereas for
𝜅 = 𝜏 − 1 most intermediate values between 0 and 0.275 are obtained
several times (compare Fig. 8 A vs. Fig. 8 D).

We further investigate how the optimal transitioning probabilities
change with minimum residence time and observe a sharp switching
behavior based on mean residence time 𝜏 and delay to reach dormancy
𝑛:

1. Optimal transitioning probabilities increase with 𝜅 when 𝜏 > 𝑛+2
(compare the top of each panel in Fig. 8).

2. Optimal transitioning probabilities decrease with 𝜅 when 𝜏 ≤ 𝑛+2
until they reach 0 or 0.025 when 𝑘 = 𝜏−1 (compare the bottom of each
panel in Fig. 8).

We interpret these two observations as follows: as 𝜅 increases, 𝜏 =
𝑛 + 2 represents the threshold when the environmental residence time
is often equal to time to transition into dormancy. When 𝜅 = 𝜏 − 1,
environments often remain unchanged for exactly 𝜏 − 1 time steps. If
𝜏 = 𝑛+2, then environments remain constant for exactly 𝜏−1 = 𝑛+1 time
steps which coincides with the number of steps needed to transition
between active and dormant (recall that delay 0 still takes one time
step). If there is some uncertainty regarding how soon the environments
will change, i.e., smaller values of 𝜅, dormancy might still be beneficial
even if the delays are longer than mean environmental residence times.
However, when environments are highly correlated, the relationship
between length of delays 𝑛 and mean environmental residence times 𝜅
determines whether dormancy is a favorable strategy or not. In other
words, if by the time dormancy is reached the environmental condition
has changed, it would be more beneficial not to engage in dormancy at
all.

4. Discussion

Using a stochastic model of individual growth and dormancy cou-
pled to fluctuating environments, we find that delays in transitioning
into dormancy have a significant impact on the benefits of dormancy:
both in reducing long-term population fitness and optimal transitioning
probabilities. Delays in phenotypic switching decrease the benefits and
increase the risk of investing in dormancy since transitory states are
susceptible to harsh conditions. We find that the balance between the
length of delays, mean residence time and minimum residence time
determines how much and whether dormancy is a beneficial strategy.
8

In particular, we find that dormancy is no longer beneficial when
delays are consistently longer than environmental residence times,
but dormancy can be maintained at a low level when environmental
predictability is low. Additionally, if the delay and environmental
switching are kept constant, the optimal dormancy strategy can be both
zero or nonzero depending on how predictable the environment is.
Thus while delays in phenotypic switching can have a drastic effect
on optimal strategies environmental predictability alone can lead to
the maintenance or loss of dormancy. These results show that all three
components – environmental mean residence time, minimum residence
time, and delay times – are essential in analyzing the benefits of
dormancy as a bet-hedging strategy.

These findings build upon previous work on phenotypic switch-
ing which have prioritized the link between the mean environmental
residence time and optimal transitioning probabilities. In classic bet-
hedging theory, environmental conditions change randomly and are not
correlated. In that case, corresponding to 𝜅 = 1, optimal transitioning
probabilities match the theoretical prediction from Maslov and Sneppen
(2015). When environments remain constant for longer periods of
time and 𝜅 is closer to 𝜏, we recapitulate the result that optimal
transitioning probabilities should match the environmental switching
probabilities (Kussell and Leibler, 2005). By varying 𝜅 between 1 and
𝜏 we are able to see how the system behaves in between these limiting
cases.

Our results highlight the importance of considering dormancy asso-
ciated life-history traits when assessing optimal bet-hedging investment
in a biological system. In the absence of a sensing mechanism, we
predict that dormancy is favorable in unpredictable environments even
when delays are relatively high. In contrast, in more predictable envi-
ronments dormancy is beneficial only if environments remain constant
longer than the time needed to transition into dormancy. For or-
ganisms with long delays to reach dormancy, such as spore-forming
bacteria or plants, our results suggest that stochastic entry and exit
from dormancy is beneficial either in highly unpredictable environ-
ments or in environments that switch infrequently between states.
For organisms with shorter delays to reach dormancy, such as those
entering a quiescent state, randomly initiating dormancy may be ben-
eficial regardless of environmental conditions, however higher optimal
dormancy transitioning is obtained in more predictable environments.

We made several simplifying assumptions when modeling the link
between dormancy, fluctuating environments, and long-term fitness.
Environments are parameterized in a binary fashion as good or bad
with fixed associated growth or death factors, whereas in reality envi-
ronmental severity and organismal parameters can take on more than
two values. Additionally, we assume that dormancy is purely stochas-
tic without taking into account a responsive transitioning mechanism
based on available resources or population density (Finch-Savage and
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Footitt, 2017; Graeber et al., 2012; Dworkin and Shah, 2010; Piggot and
Hilbert, 2004). Indeed, our results suggest that when dormancy takes
time to initiate, there may be a broad set of parameter combinations
when responsive switching may outperform strictly bet hedging strate-
gies (Basan et al., 2020). Lastly, we note that this work does not explore
a potential relationship between the delay to reach dormancy and the
robustness of the dormant state against environmental stressors (Mutlu
et al., 2020). In reality, protective benefits of dormancy may vary with
time of investment; hence it may be of value to explore potential trade-
offs between different types of dormancy strategies when the benefits
of dormancy also vary with the time to reach it. Using the framework
presented in this paper could provide further insight into the trade-off
between the quantity and quality of dormant individuals.

In summary, our findings extend previous efforts to analyze bet-
hedging strategies by showing the importance of incorporating delays
to reach dormancy. As we have shown, small changes in the mech-
anistic representation of dormancy and/or environmental conditions
can have large effects on the benefits of particular bet-hedging strate-
gies. Future work incorporating mixed strategies, direct competition
between populations, and sensing-based initiation and exiting of dor-
mancy could provide insights regarding the benefits and robustness of
evolutionary strategies in fluctuating environments.
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