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Supplementary Box 1 — Ecological conditions favoring the evolution of microbial aging 

(reproductive asymmetry) versus non-aging (reproductive symmetry). 

 

Both microbial longevity and senescence can have evolutionary advantages, depending on 

the ecological circumstances. Mechanistically, longevity is characterized by processes of cellular 

repair and maintenance that directly combat damage, while senescence is characterized by accu-

mulation of damage and the processes of asymmetric reproduction that sequester it1 (see Mech-

anisms of microbial aging section). The relative costs and benefits of repair and maintenance 

versus asymmetric reproduction—reproduction-longevity tradeoffs—will determine whether se-

nescence evolves2,3. Combating damage expends ATP, time, and other resources4–7. Repair pro-

motes longevity, but spending too much time and energy on damage repair could cause an organ-

ism to lose the opportunity to reproduce, perhaps due to extrinsic mortality or to insufficient en-

ergy resources remaining for reproduction.  

 

Resource-rich environments support rapid rates of cellular activity, metabolism, growth, and 

reproduction, which as a byproduct can increase the rate of macromolecular damage. When mac-

romolecular damage is high, repair is insufficient or too inefficient to cope with damage, and the 

evolution of asymmetric reproduction with its associated possibility of senescence can be fa-

vored2,3,8–13. The benefits of the ability to quickly make use of resources for growth and repro-

duction in an energy-rich environment outweigh the cost of senescence. 

 

On the other hand, the strategy of cellular repair excels in circumstances when damage is low 

enough to be kept in check3,13. This would typically occur in stable, low-energy environments 
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where metabolic efficiency is advantageous and where slowed metabolic rates also slow the in-

cidence of damage3,14–18. As one might expect if low-energy environments select for repair and 

longevity, the long-lived microorganisms inhabiting ecosystems like the deep biosphere com-

monly exhibit signatures of cellular repair14,15,19. Selection for repair and longevity in low-energy 

conditions may even provide an evolutionary basis for the observation that a low energy diet or 

dietary restriction extends lifespan in both unicellular and multicellular taxa20,21. 
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