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Summary

Bacterial growth efficiency (BGE) is the proportion of
assimilated carbon that is converted into biomass
and reflects the balance between growth and ener-
getic demands. Often measured as an aggregate
property of the community, BGE is highly variable
within and across ecosystems. To understand this
variation, we first identified how species identity and
resource type affect BGE using 20 bacterial isolates
belonging to the phylum Proteobacteria that were
enriched from north temperate lakes. Using a trait-
based approach that incorporated genomic and phe-
notypic information, we characterized the metabolism
of each isolate and tested for predicted trade-offs
between growth rate and efficiency. A substantial
amount of variation in BGE could be explained at
broad (i.e., order, 20%) and fine (i.e., strain, 58%) tax-
onomic levels. While resource type was a relatively
weak predictor across species, it explained >60% of
the variation in BGE within a given species. A meta-
bolic trade-off (between maximum growth rate and
efficiency) and genomic features revealed that BGE
may be a species-specific metabolic property. Our
study suggests that genomic and phylogenetic infor-
mation may help predict aggregate microbial commu-
nity functions like BGE and the fate of carbon in
ecosystems.

Introduction

In most ecosystems, heterotrophic bacteria play a pivotal
role in determining whether organic carbon is respired as
carbon dioxide (CO2) or converted into biomass and
retained in food webs (Pomeroy et al., 1998; Bardgett

et al., 2008; Ducklow, 2000). Many factors control how
bacteria process carbon, but one of the most important is
bacterial growth efficiency (BGE). BGE is the proportion
of assimilated organic carbon that is converted into bac-
terial biomass (del Giorgio and Cole, 1998). When BGE
is high, more carbon is turned into bacterial biomass
where it can be retained for longer periods of time while
also serving as a resource for other members of the food
web. In contrast, when BGE is low, microbially assimi-
lated carbon has a shorter residence time and is released
into the environment as CO2. Typically measured as an
aggregate property of the microbial community, BGE is
notoriously variable among habitats and has proven diffi-
cult to predict (del Giorgio and Cole, 1998; Sinsabaugh
et al., 2013). While a range of chemical and physical vari-
ables influence BGE at the community-level (Apple and
del Giorgio, 2007; Hall and Cotner, 2007; del Giorgio and
Newell, 2012; Geyer et al., 2016), fewer studies have
investigated how the traits of species contribute to BGE
(Pold et al., 2020).

A trait-based approach provides an opportunity for a
deeper understanding of how microbial composition and
physiology contribute to BGE. By focusing on physiologi-
cal, morphological, or behavioural characteristics that
affect performance, a trait-based approach can be used
to predict fitness under a set of environmental conditions
(Lennon et al., 2012). The distribution of traits among
organisms may reflect adaptations, phylogenetic related-
ness and metabolic constraints (Martiny et al., 2015). In
the context of BGE, insight may be gained by identifying
taxon-specific differences in microbial metabolism that
result from the physiological balance between cellular
growth and energetic demands. For example, the bacte-
rial growth strategy is predicted to constrain BGE via
physiological trade-offs (Litchman et al., 2015). As a
result, it has been hypothesized that oligotrophs have
higher maximum growth efficiency than copiotrophs
(Roller and Schmidt, 2015), and rapidly growing bacteria
have been shown to ‘spill’ up to 20% of their energetic
budget due to overflow respiration (Russell, 1991, 2007).
Likewise, BGE may be influenced by an organism’s
capacity to use different types of resources. For example,
species that specialize on only a few resources are
predicted to be more efficient at using those resources
than generalist species that require more cellular machin-
ery to use a larger array of substrates (Dykhuizen and
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Davies, 1980; Glasser, 1984). Therefore, traits such as
maximum growth rate and the number of resources used
(i.e., niche breadth) could underlie species-specific differ-
ences in BGE.

A trait-based approach to BGE also requires that
metabolism be examined with respect to the resources
that are being consumed. Different resources can affect
cellular ATP yield depending on the metabolic pathways
used (Fuhrer et al., 2005; Flamholz et al., 2013), which in
turn can influence cellular growth yield (Neijssel and de
Mattos, 1994; Russell and Cook, 1995). For example,
glucose is metabolized via glycolysis, but growth on more
complex, aromatic compounds, such as protocatechuate,
requires the β-ketoadipate pathway, which yields less
ATP (Gottschalk, 1986). Furthermore, energy-producing
catabolic processes and biomass-producing anabolic
processes are not independent (Russell and Cook, 1995;
Kempes et al., 2012). For example, cells have the poten-
tial to produce >30 ATP from a single glucose molecule if
it is completely oxidized, but there would be no remaining
carbon to yield new biomass. Instead, cells must use the
intermediate products of glycolysis and the TCA cycle to
form proteins and other cellular material, which dimin-
ishes the maximum potential ATP yield
(Gottschalk, 1986; Flamholz et al., 2013). In addition,

biomass production requires materials and energy. For
example, the synthesis of proteins, which can constitute
�55% of cellular dry mass (Milo, 2013), requires amino
acid building blocks and four ATP per peptide bond
(Tempest and Neijssel, 1984; Gottschalk, 1986; Lynch
and Marinov, 2015). Therefore, because resources differ
in their potential energy yield and bacteria differ in their
ability to extract energy and form biomass from a given
resource, BGE should vary based on the resources avail-
able to bacteria.

In this study, we used a trait-based approach to under-
stand how species identity and resource type control
BGE. We measured BGE in a diverse set of bacterial iso-
lates supplied with one of three different carbon
resources that varied in chemical structure and metabolic
pathway (Fig. S1). The trait-based approach provides a
framework to understand how and why the composition
of microbial communities should affect ecosystem func-
tioning (Wallenstein and Hall, 2012; Krause et al., 2014).
We used the taxonomic and phylogenetic relatedness of
the bacterial isolates to explore the variation in BGE
when supplied with different carbon resources. In addition
to partitioning variation in BGE based on species identity
and resource type, we tested for hypothesized trade-offs
with growth rate and niche breadth while taking phylog-
eny into account. Furthermore, using the genomes of
each isolate, we evaluated whether metabolic pathways
could explain differences in BGE among diverse repre-
sentatives of aquatic bacteria from north temperate lakes.
Last, to test if resource type affects the metabolic traits
that underlie BGE (i.e., production and respiration), we
tested for resource-specific relationships between respi-
ration and production rates for each resource. Our trait-
based approach provides a framework for understanding
linkages between community structure and function due
to the physiological constraints on BGE and suggests
that large changes in community composition or available
resources may alter BGE and therefore carbon cycling in
predictive ways.

Results

Bacterial growth efficiency

Using measures of bacterial productivity (BP) and respi-
ration (BR), we calculated BGE for 20 aquatic bacterial
isolates growing on three different resources: glucose,
succinate and protocatechuate (Fig. S1). Isolates were
enriched from north temperate lakes, and all belonged to
the Proteobacteria phylum with representatives from the
Alpha-, Beta-, and Gamma-proteobacteria subphyla
(Fig. 1, Fig. S2). Across isolates, BGE ranged from <0.01
to 0.32 (Fig. 1). Based on linear mixed-effects models,
species identity and resource type explained a
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Fig. 1. Bacterial growth efficiency (BGE) of each isolate for each
resource. BGE was calculated based on measured production
(BP) and respiration (BR) rates using the following equation:
BGE = BP/(BP + BR). The cladogram is based on the RAxML con-
sensus tree but is shown without branch lengths for visualization
(see Fig. S2 for the complete phylogenetic tree). Taxonomic class
and order are included based on the Ribosomal Database Project
taxonomy: α = Alphaproteobacteria, β = Betaproteobacteria,
γ = Gammaproteobacteria, Xan. = Xanthomonadales, Aero. =
Aeromondales, Pseu. = Pseudomondales. The BGE group is indi-
cated for each isolate (H = high; L = low).
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substantial amount of variation in BGE. Across
resources, species identity explained 58% of the variation
in BGE and 67% of the variation within a resource type.
The taxonomic order of each species explained 20% of
the variation in BGE across all resources and 28% of the
variation within each resource type. Resource type only
explained 8% of the variation in BGE across all species,
but 63% of the variation within species (see Table S1 for
additional information model output).
Next, we tested for phylogenetic signal in BGE. Using

Blomberg’s K, no phylogenetic signal was detected for
BGE when isolates were supplied with succinate
(K = 0.002, p = 0.24) or protocatechuate (K = 0.001,
p = 0.146), but there was a significant phylogenetic signal
when isolates used glucose (K = 0.002, p = 0.04). How-
ever, the low K value suggests that BGE is over-
dispersed (i.e., less phylogenetic signal than expected
under Brownian motion). Similarly, when using Page’s λ,
we found no evidence that BGE had a phylogenetic sig-
nal when the isolates were supplied with any of the
resources (Glucose: λ = 0.10, p = 0.76; Succinate:
λ = 0.13, p = 0.66; Protocatechuate: λ < 0.01, p = 0.99).
Last, we determined if the values of BGE observed

across isolates and resources were unimodally distrib-
uted. Based on Hartigan’s dip test, there was a bimodal
distribution of BGE among our isolates when supplied
with glucose or succinate (Dglu = 0.07, p = 0.58;
Dsuc = 0.08, p = 0.30; Fig. S3). Using this distribution,
isolates were split into two groups (based on the glucose
BGE), which we define as the ‘high-BGE’
(mean = 19.6% ± 2.8) and ‘low-BGE’ (mean = 0.5% ± 0.2)
groups.

Phenotypic comparisons

Using linear models, we identified phenotypic differences
between isolates that were related to BGE (Fig. 2). While

there was no relationship between BGE and maximum
growth rate in the low-BGE group of bacteria (μmax;
F1,7 = 0.035, r2 < 0.01, p = 0.86), there was a significant
inverse relationship between BGE and μmax for the high-
BGE group (F1,7 = 7.79, r2 = 0.53, p = 0.027). This model
predicts a 2.6% decrease in BGE for each per minute
increase in μmax in the high-BGE group. In contrast to our
predictions, there was no relationship between niche
breadth (Levins Index) and BGE for the low-BGE group
(F1,7 = 1.42, r2 = 0.17, p = 0.27) or the high-BGE group
(F1,7 = 0.92, r2 = 0.11, p = 0.37).

Genomic comparisons

We detected genomic differences related to BGE. First,
isolates in the high-BGE group had 26% more annotated
metabolic pathways (based on an 80% module comple-
tion ratio cut-off) than isolates in the low-BGE group
(high = 66 ± 3, low = 52 ± 4, t-test: t18 = −2.64, p = 0.02).
Second, we found that the number of metabolic pathways
corresponded with BGE when supplied with glucose, but
the direction of the relationship depended on the BGE
group. For the high-BGE group there was a negative rela-
tionship between BGE and the number of pathways
(β = −0.006 ± 0.002, r2 = 0.48, p = 0.04), but for the low-
BGE group there was a positive relationship
(β = 0.0003 ± 0.0001, r2 = 0.37, p = 0.05). Next, we found
that differences in the metabolic pathway composition
could help explain which BGE group an isolate belongs,
and the pathway composition of an isolate was related to
its BGE. Specifically, three pathways were indicators of
an isolate being in the high-BGE group (Table 1). Like-
wise, within the high-BGE group 24% of the variation in
BGE could be explained based on the composition of
metabolic pathways (dbRDA: F1,7 = 2.17, R2 = 0.24,
p = 0.05). Eight pathways had significant correlations
(|ρ| > 0.7) with BGE (Table 2). However, there was no
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(A) (B) Fig. 2. Phenotypic traits associated
with BGE. A. Maximum growth rate, a
measure of growth strategy, demon-
strates a trade-off (negative relation-
ship) with BGE in the high-BGE group
(F1,7 = 9.52, r2 = 0.54, p = 0.015) but
not the low-BGE group (F1,7 = 0.51,
r2 = 0.06, p = 0.50). B. Levins Index, a
measure of niche breadth, does not
demonstrate a trade-off with BGE in
either the high- or low-BGE groups
(high: F1,7 = 0.92, r2 = 0.11, p = 0.37;
low: F1,7 = 1.47, r2 = 0.17, p = 0.27).
High- and low-BGE groups were deter-
mined based on the bimodal distribu-
tion of BGE (see Fig. S3).
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relationship between pathway composition and BGE for
the low-BGE group (p = 0.45), nor was the BGE group a
strong predictor of pathway composition
(PERMANOVA: p = 0.23).

Resource effects

Indicator variable linear regression revealed a positive
relationship between the per cell respiration and produc-
tion rates (Fig. 3, F9,42 = 8.07, R2 = 0.63, p < 0.001) with
there being a higher y-intercept for the high-BGE group
of isolates (βGroup = 2.7, p < 0.001). Resource type, how-
ever, had no effect on the BR–BP relationship or the
effect of the BGE group (i.e., no interactions; all
p > 0.25). Last, the slope of the BR–BP relationship was
not different from one (t42 = 0.76, p = 0.45; Fig. 3) indicat-
ing that the two measures of bacterial metabolism scale
proportionately (i.e., isometrically) with one another.

Discussion

We measured BGE in 20 aquatic bacterial isolates sup-
plied with one of three resources that varied in their bio-
availability, structure and pathways required for
metabolism (Fig. S1). While BGE varied across isolates,
there was mixed evidence for a phylogenetic signal
based on efficiency. However, a substantial amount
(20%) of the variation in BGE could be explained by an
isolate’s taxonomic order while a much smaller amount of
the variation (8%) could be attributed to the particular
resource used (Fig. 2). We found evidence for a
predicted trade-off between maximum growth rate and
efficiency, but only on the most labile resource (glucose)
(Fig. 2). Even though it explained 63% of the variation in
BGE within an isolate, resource type did not alter the
relationship between respiration and production rate
observed across isolates (Fig. 3). Together, our results
support the view that BGE is a complex physiological
trait, but resource characteristics may modify species-
specific physiological performances. Taxonomic groups
of bacteria may have fundamentally different growth effi-
ciencies such that changes in community composition
may alter the fate of carbon resources (i.e., biomass ver-
sus CO2) within the ecosystem (Treseder et al., 2011;
Wallenstein and Hall, 2012).

BGE as a trait

Our results indicate that there are species-specific prop-
erties regulating BGE, which may be conserved at higher
taxonomic levels. This conclusion is consistent with the
view that BGE represents a complex bacterial trait
(i.e., an aggregate property of numerous cellular func-
tions) with ecological significance, and that different
groups of bacteria have different strategies for carbon
allocation. Our phylogenetic analyses suggest that BGE
may be an over-dispersed trait (at least with glucose)
such that the efficiencies of closely related bacteria are
less similar than expected. Though some traits such as
phosphorus acquisition, photosynthesis and
methanogenesis are phylogenetically conserved deep in
the microbial tree of life (Martiny et al., 2006, 2013),
others such as complex carbon metabolism are not
(Zimmerman et al., 2013). Therefore, BGE may be similar
to traits such as complex carbon metabolism that are not
deeply conserved. An alternative explanation for this pat-
tern is that our culture collection lacked phylogenetic res-
olution within some of our taxonomic groups
(e.g., Betaproteobacteria) or that the variation in BGE
within a taxonomic group (e.g., order) may not be the
same across taxonomic groups. Because our analysis
focused on Proteobacteria with a large representation
from the Gammaproteobacteria, it is possible that we

Table 1. Genetic pathways unique to the high-BGE isolates.

Pathway Reference function Prob.

M00045 Histidine degradation (histidine à
N-formiminoglutamate à glutamate)

0.02

M00060 Lipopolysaccharide biosynthesis(Kdo2-lipid
A biosynthesis)

0.02

M00565 Trehalose biosynthesis (D-glucose-1P à
trehalose)

0.03

Functional metabolic pathways were identified from genome
sequencing and predicted using Maple. Prob. = probability statistic
from indicator species analysis: the probability that the ‘species’
(i.e., pathway) is not unique to the group.

Table 2. Genetic pathways correlated with BGE in the high-BGE
group.

Relationship ρ Pathway Reference function

Positive 0.82 M00025 Tyrosine biosynthesis
(chorismate à tyrosine)

0.72 M00034 Methionine salvage pathway
Negative −0.73 M00117 Ubiquinone biosynthesis

(chorismate à ubiquinone)
−0.82 M00044 Tyrosine degradation (tyrosine

à homogentisate)
−0.82 M00053 Pyrimidine

deoxyribonucleotide
biosynthesis(CDP/CTP à
dCDP/dCTP, dTDP/dTTP)

−0.82 M00549 Nucleotide sugar biosynthesis
(glucose à UDP-glucose)

−0.82 M00568 Catechol ortho-cleavage
(catechol à 3-oxoadipate)

−0.82 M00637 Anthranilate degradation
(anthranilate à catechol)

Correlations are Spearman’s rank correlations between BGE and the
pathway presence. Pathways with correlation coefficients (ρ) ≥ |0.70|
were considered significant.
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missed important phylogenetic patterns found in other
important lineages (e.g., Bacteroidetes). Likewise, the
phylogenetic methods used assume that trait variation is
proportional to branch length variation and this may not
be the case for BGE. Regardless, our data reveal that
BGE is a complex bacterial trait that is influenced by tax-
onomic affiliation. As such, it may be possible to make
predictions about BGE and other ecosystem functions
given information about the composition of resident
microbiomes (Goberna and Verdú, 2016).

BGE on different resources

Differences in resource complexity and the metabolic
pathways required for degradation may explain species-
specific differences in BGE due to the resource type
used. Within an isolate, resource type accounted for 63%
of the variation in BGE. Given that different resources are
processed via different metabolic pathways, it is perhaps
not surprising that we observed resource-based variation
in BGE within species. For example, BGE was higher
when isolates were supplied with glucose compared with
when they were supplied with protocatechuate. Glucose

is a simple sugar that is able to be metabolized by
numerous pathways and converted to acetyl-CoA
(Neidhardt, 2007). Protocatechuate, on the other hand, is
a complex aromatic compound that requires a specific
metabolic pathway to be converted to acetyl-CoA. Fur-
thermore, because protocatechuate is chemically more
complex, it requires more energy (i.e., ATP) to be
degraded than more labile resources such as glucose
(Harwood and Parales, 1996). Therefore, resource com-
plexity and the metabolic pathways required may explain
the within-species variation in BGE. Across species,
there were no resource-specific differences in the rela-
tionship between respiration and production rate. How-
ever, our results may be limited by the number and types
of resources used in this study. Regardless, our findings
suggest that the energetic demands required to use dif-
ferent resources may be a species-specific trait. That is,
the energetic demands for individual species may be
constrained and therefore not change much when grow-
ing on different resources. These findings suggest that
the effect of resources on the efficiency of entire
microbiomes may depend on the composition of bacteria
consuming those resources.

Low- vs. high-efficiency taxa

Although, the range of BGE measured across isolates is
similar to the range observed in many ecosystems (del
Giorgio and Cole, 1998), our results suggest that some
species of bacteria grow relatively inefficiently,
irrespective of resource quality. Across all isolates, we
found a bimodal distribution of BGE suggesting that there
were two distinct groups with contrasting efficiencies.
One group had low BGE (<5%) across all resource types
while the other group ranged in BGE from 7% to 30%
(Figs 1 and 2). One explanation is that the minimum cel-
lular energetic demand (i.e., cellular maintenance costs)
is higher in some bacteria than others (Russell and
Cook, 1995); however, this would likely only have an
impact when growth rates are low. Furthermore, ener-
getic demand may be higher when bacteria are grown in
minimal media where they must produce all cellular com-
ponents from a single carbon resource (Tao et al., 1999).
Alternatively, nutrient concentrations (e.g., phosphorus)
and other physical properties (e.g., temperature) may
regulate efficiency (Smith and Prairie, 2004; Frey
et al., 2013) and the effects of these properties may be
species-specific. As such, it is possible that maintenance
costs, resource imbalances and the physical growth con-
ditions affected the BGE of our isolates. Furthermore, dif-
ferences in low-BGE and high-BGE isolates were also
reflected in genomic content, including the number and
presence–absence of metabolic pathways. However,
these genomic features seem to best explain large-scale
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rather than fine-scale differences in BGE. These findings
suggest that there are fundamental differences between
bacterial species that determine BGE.

Physiological trade-offs

We found evidence to support a trade-off between maxi-
mum growth rate and BGE (Fig. 2), which is predicted in
microbial and non-microbial systems (Glasser, 1984;
Roller and Schmidt, 2015). For example, theoretical
models of microbial communities predict a rate-efficiency
trade-off (Allison, 2014), which has been observed
across microbial taxa (Lipson, 2015). Physiologically, the
trade-off is based on allocation constraints imposed by
the balance between energy requirements and biomass
yield: organisms with higher maximum growth rates may
have greater energetic requirements and thus lower BGE
than organisms with lower maximum growth rates
(Russell and Baldwin, 1979; Russell and Cook, 1995).
Furthermore, processes that limit respiration, such as
oxygen availability, have been shown to suppress bacte-
rial growth rate (Meyenburg and Andersen, 1980). There-
fore, the respiration rate is likely a major control on
biomass production and BGE. Consistent with this, we
observed an isometric scaling relationship between respi-
ration and production rates (Fig. 3). The non-zero inter-
cept of this relationship suggests that there is a minimum
respiration rate required before any biomass can be pro-
duced, which is commonly interpreted as the cellular
maintenance requirement. Therefore, it is possible that
the maintenance energy demand of a bacterial species
explains the physiological trade-off between maximum
growth rate and growth efficiency.

The theory also predicts a trade-off between resource
niche breadth and growth efficiency (Glasser, 1984). This
trade-off is based on the assumption that there is an
energetic cost to maintaining numerous metabolic path-
ways (Johnson et al., 2012). As such, species with more
metabolic pathways should have more energetic require-
ments and thus lower BGE; although, the effects of
genome reduction has been debated (Giovannoni
et al., 2005; Livermore et al., 2014). In this study, physio-
logical profiling using Biolog EcoPlates was conducted to
quantify resource niche breadth based on 31 unique car-
bon sources, but we did not find evidence of a trade-off
between resource niche breadth and BGE (Fig. 2). Like-
wise, there was no evidence that the number of genes or
genome size directly influenced BGE (Tables S2–S3),
but we did find an inverse relationship between the num-
ber of pathways and BGE for the high-BGE group. One
possible explanation for the lack of a niche breadth-
efficiency trade-off is that the resources used in our phe-
notypic assay (i.e., Biolog EcoPlates) did not reflect the
full metabolic potential of our isolates. Alternatively, there

may not be a strong trade-off between niche breadth and
efficiency, but further experiments with additional isolates
and resources are required to test this prediction more
rigorously.

Genomic signatures

In addition to the physiological differences documented
among our isolates, we found genomic evidence of meta-
bolic pathways that are associated with BGE. Specifi-
cally, there were genomic differences between isolates
belonging to the low-BGE and high-BGE groups. Isolates
from the high-BGE group had 26% more annotated meta-
bolic pathways than isolates in the low-BGE group. Fur-
thermore, three pathways were unique to the high-BGE
group (Table 1) and a number of pathways were corre-
lated with the observed BGE (Table 2; Table S2). Our
findings suggest that there are genomic features that
may contribute to or regulate BGE.

In general, the genomic composition of BGE groups
appears to reflect differences in cellular biosynthesis. It is
possible that species with particular biosynthesis path-
ways may generate essential cellular components with
less energetic demand. For example, the low-BGE iso-
lates lacked some metabolic pathways, including pyri-
doxal biosynthesis and histidine degradation, which were
present in the high-BGE group. The pyridoxal biosynthe-
sis pathway produces vitamin B6 from erythrose-
4-phosphate (Mukherjee et al., 2011). Because vitamin
B6 is essential for growth, the isolates lacking the pyri-
doxal pathway must use alternatives such as uptake from
the environment if they are auxotrophic (i.e., unable to
synthesize) or other synthesis pathways such as the
deoxyxylulose-5-phosphate synthase (DXS) pathway
(found in all but three of the genomes in this study;
Table S4; Mukherjee et al., 2011). However, the DXS
pathway requires pyruvate (a precursor for Krebs cycle)
and thus may limit central metabolism and possibly lead
to lower BGE. Likewise, the histidine degradation path-
way is used to breakdown histidine into ammonium and
glutamate (Bender, 2012). Alternatively, glutamate can
by synthesized from α-ketoglutarate; however, because
α-ketoglutarate is an intermediate component of the
Krebs cycle this may limit central metabolism and possi-
bly lead to reduced BGE if the energetic requirements
are maintained but the ability to recycle biomass is
reduced.

Conclusion

A trait-based approach can provide a mechanistic link
between the structure and function of bacterial communi-
ties. At the cellular level, BGE reflects the balancing of
energetic and cellular growth demands. We found
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evidence of this based on physiological trade-offs
(i.e., maximum growth rate) as well as metabolic path-
ways. As such, changes in community composition and
resource availability have the potential to alter the food
web and ecosystem function due to changes in BGE. For
example, communities dominated by species with low
BGE should yield a higher net release of CO2 from the
ecosystem. Alternatively, communities comprised of indi-
viduals with high BGE could yield increased carbon and
energy flow within aquatic food webs, depending on tro-
phic transfer efficiency. However, variation in BGE can
arise within a species due to the ways in which it pro-
cesses different resources. Therefore, changes in the
resource supply will alter the performance of individual
taxa, but we predict that these changes will not be as
strong as changes in BGE that arise owing to differences
in community composition. Our results highlight how
bottom-up, trait-based approaches may be useful for
understanding complex microbial communities in nature.

Methods

Bacterial isolates

Using a novel cultivation approach, we isolated 20 bacte-
rial strains from lakes in the Huron Mountain Research
Preserve (Powell, MI, USA) by incubating inert carbon
beads (Bio-Sep Beads) in the water column for 1 week.
Prior to the incubations, the beads were saturated with a
sterile, complex-carbon substrate, i.e. Super Hume
(CropMaster, United Agricultural Services of America,
Lake Panasoffkee, FL, USA). Super Hume is a lignin-rich
resource comprising 17% humic and 13% fulvic acids
and has been shown to be an analog of terrestrial DOC
in aquatic ecosystems that can be used by diverse bacte-
ria (Lennon et al., 2013). We used this enrichment tech-
nique to select for bacteria with a range of metabolic
potentials (Ghosh et al., 2009). After the incubation,
beads were rolled on R2 agar plates (BD Difco, Sparks,
MD, USA) and incubated at 25 �C. Random colonies
from plates were picked and serially transferred until axe-
nic. All isolates were preserved in 25% glycerol at
−80 �C.
Each bacterial strain was identified by direct sequenc-

ing of the 16S rRNA gene using genomic DNA extracted
from log-phase cultures using the FastPrep DNA extrac-
tion kit (MP Biomedical). After amplifying the 16S rRNA
gene using the 27F and 1492R bacterial primers (See for
primer sequences and PCR conditions), we sequenced
the PCR products at the Indiana Molecular Biology Insti-
tute (IMBI) at Indiana University (Bloomington, IN, USA).
Raw sequence reads were quality-trimmed based on a
Phred quality score of 25. Forward and reverse reads
were manually merged after aligning sequences to the

Silva 16S SSU rRNA reference alignment (release 132)
using SINA v. 1.2.11 and the Bacteria variability profile.
After merging into full-length 16S rRNA sequences, we
used mothur (Schloss et al., 2009) to check the quality of
sequences, and alignments were checked using the ARB
software package (Ludwig et al., 2004). Finally,
sequences were compared with the Silva All-Species Liv-
ing Tree Project database (Yilmaz et al., 2014) for taxo-
nomic identification (Fig. S2).

Bacterial growth efficiency

We measured BGE for each isolate when supplied with
one of three different carbon substrates: glucose, succi-
nate, or protocatechuate (Fig. S1). These carbon sources
(i.e., resources) were chosen based on differences in
their bioavailability and structure but also the required
pathways for metabolism (see Fig. S1). We measured
bacterial respiration and production rates and then calcu-
lated BGE as BP/(BP + BR), where BP is bacterial pro-
ductivity and BR is bacterial respiration (del Giorgio and
Cole, 1998). BP and BR were measured using triplicate
cultures of each isolate. Cultures of each isolate were
grown in R2 broth (BD Difco) until mid-log phase. Hun-
dred microliters of culture was then transferred into 10 ml
of M9 broth (Green and Sambrook, 2012) with the appro-
priate carbon source (25 mM C) and allowed 24 h to
acclimate. We then transferred 100-μl of culture into
10 ml of fresh carbon-amended M9 broth and incubated
1–3 h to replenish nutrients. Using these transfers, we
were able to establish populations of each isolate at tar-
get cell densities between 104 and 105 cells ml−1. We
used the populations to measure BP and BR, which were
normalized to cell density using plate counts of colony-
forming units. BP was measured using the 3H-Leucine
assay (Smith and Azam, 1992) with 1.5 ml of cultures in
triplicate. We added 3H-Leucine to a final concentration
of 50 nM and incubated for 1 h. Following incubation, pro-
duction was terminated with trichloroacetic acid (final
concentration 3 mM), and we measured leucine incorpo-
ration using a liquid scintillation counter. BR was mea-
sured using an automated O2 measurement system
(PreSens Sensor Dish System, PreSens, Regensburg,
Germany) with 5 ml of cultures in triplicate. We estimated
BR based on the slope of O2 concentration (i.e., O2 con-
sumption rate) during a 3-h incubation using linear
regression. A respiratory quotient conversion factor was
used to convert O2 depletion into C respiration assuming
aerobic growth (del Giorgio and Cole, 1998).

Taxonomic and phylogenetic relationships

We compared differences in BGE across isolates and
resources using linear models. First, a taxonomic
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framework was used to compare BGE between isolates
(Lennon et al., 2012). Isolates were classified into taxo-
nomic groups based on the species tree constructed in
ARB. Mixed linear models were used to compare BGE
across taxonomic groups and resources. To test the
hypothesis that taxonomy (i.e., at the order level) affects
BGE, we nested resource type within isolate in the linear
model. To test the hypothesis that the specific resource
used affects BGE, we nested isolate within resource
type. The best statistical models were identified based on
the variation explained (R2) and AIC values. Second, we
tested if phylogenetic relationships between isolates
could explain the differences in BGE across isolates. We
created a phylogenetic tree based on the full-length 16S
rRNA gene sequences. Sequences were aligned using
the SINA aligner (Pruesse et al., 2012) and checked
alignments using ARB. A phylogenetic tree was gener-
ated using RAxML (v.8.2.12; Stamatakis, 2006) using the
CIPRES science gateway (Miller et al., 2010). We used
the GTRGAMMA DNA substitution model and the rapid
hill-climbing algorithm to build our maximum likelihood
trees and used the extended majority rule to find the con-
sensus tree. Blomberg’s K and Pagel’s Lambda were
used to compare trait variation (as a continuous variable)
across the tree and test if phylogenetic relationships
between isolates could explain differences in traits
(Pagel, 1999; Blomberg et al., 2003). Blomberg’s K is a
test for the phylogenetic signal that determines if trait var-
iation is better explained by phylogenetic relationships or
Brownian motion. Pagel’s Lambda is a test of phyloge-
netic signal that determines if trait variation differs from
Brownian motion. Last, to determine if the distribution of
BGE across isolates was unimodal, we used Hartigan’s
dip test for unimodality (Hartigan and Hartigan, 1985).
Hartigan’s dip test is used to determine if a distribution is
unimodal by testing the null hypothesis that there is a dip
in the distribution. A significant Hartigan’s dip test would
suggest that the distribution is unimodal. Alternatively,
the distribution has an internal ‘dip’ (reported as D). All
statistical tests were conducted in the R statistical envi-
ronment (R Core Development Team, 2013). We used
the nlme package (Pinheiro and Bates, 2011) for the
mixed-effects linear models, the picante package
(Kembel et al., 2015) for the phylogenetic methods and
the diptest package (Maechler, 2015) for Hartigan’s
dip test.

Phenotypic comparisons and trade-offs

To test the hypothesis that phenotypic differences and
physiological trade-offs underlie BGE variation, we com-
pared the maximum growth rate (μmax) and niche
breadth of each isolate. First, to test whether BGE
was affected by growth strategy (i.e., copiotrophs

vs. oligotrophs), we measured the maximum growth rate
of each isolate. Bacterial growth rates were measured
based on changes in optical density during 18-h incu-
bations. Bacterial isolates were grown in R2 broth in
48-well plates. Plates were incubated with continuous
shaking and optical density was measured every
15 min using a plate reader (Synergy MX, BioTek,
Winooski, VT, USA). Growth curves were analysed by
fitting a modified Gompertz growth model (Zwietering
et al., 1990; Lennon, 2007) to the observed growth cur-
ves using maximum likelihood fitting. We used the
model fit as our estimate of μmax.

Second, to test whether BGE was affected by niche
breadth, we generated carbon usage profiles using
BioLog EcoPlates (Garland and Mills, 1991). The
EcoPlate is a phenotypic profiling tool consisting of
31 unique carbon sources. In addition to the carbon
source, each well contains a tetrazolium dye, which in
the presence of NADH is reduced resulting in a colour
change. This colorimetric assay was used to generate
carbon usage profiles for each strain. We standardized
profiles for each strain by subtracting water blanks (aver-
age water blank +1 SD), and relativizing across sub-
strates. Using these data, resource niche breadth was
calculated using Levins Index (Colwell and
Futuyma, 1971).

We used an indicator variable linear regression to test
for changes in the BGE rate due to the maximum growth
rate and niche breadth. The BGE group (high- versus
low-BGE) was included as the categorical predictor and
BGE as the continuous predictor (Lennon and
Pfaff, 2005). In addition, we included the interactions
term. Where the interaction term was significant, the main
effects are reported for each categorical predictor
(i.e., BGE group). All statistical tests were conducted in
the R statistical environment.

Genomic comparisons

To test the hypothesis that variation in metabolic path-
ways could explain differences in BGE, we compared the
genomes of each isolate. First, whole-genome sequenc-
ing was used to characterize each isolate and determine
the metabolic pathways present in the genome. Genomic
DNA libraries for each isolate were prepared using the
Illumina TruSeq DNA sample prep kit using an insert size
of 250 bp. Libraries were sequenced on an Illimina HiSeq
2500 (Illumina, San Diego, GA) using 100-bp paired-end
reads at the Michigan State University Research Tech-
nology Support Facility. Raw sequence reads (FASTQ)
were processed by removing the Illumina TruSeq adap-
tors using Cutadapt (Martin, 2011), interleaving reads
using Khmer (McDonald and Brown, 2013) and quality fil-
tering based on an average Phred score of 30 using the
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FASTX-toolkit (Hannon Lab, 2010). Finally, we normal-
ized coverage to 25 based on a k-mer size of 25 using
Khmer and assembled the genomes using Velvet
(Zerbino and Birney, 2008) after optimizing assembly
parameters for each isolate with Velvet Optimizer
(Gladman and Seemann, 2012). We annotated contigs
larger than 200 bp using Prokka (Seemann, 2014) and
predicted metabolic and physiological functions using
MAPLE with bidirectional best-hit matches (Takami
et al., 2012). Functional pathways (modules) were identi-
fied based on the presence of intermediate genes within
a pathway and scored pathways as present if more than
80% of the intermediate genes were recovered based on
the module completion ratios.
To test the hypothesis that metabolic pathways affect

BGE, we used multivariate methods to compare the path-
ways of each isolate. First, PERMANOVA was used to
determine if there were differences in pathways associ-
ated with the different levels of BGE, and indicator spe-
cies analysis (Dufrene and Legendre, 1997) was used to
determine which metabolic pathways contributed to
group-level differences in BGE. Next, to determine if met-
abolic pathways could explain differences in BGE within
a group, we used distance-based redundancy analysis
(dbRDA), which is a multivariate technique that tests if a
quantitative predictor can explain differences in multivari-
ate datasets (Legendre and Legendre, 2012). Because
pathways were scored as present or absent, metabolic
distances between isolates were calculated using the
Jaccard Index. Significance was tested using a permuta-
tion test. If the dbRDA model was significant, Spearman’s
rank-order correlation was used to test for correlations
between BGE and individual metabolic pathways. We
used the vegan R package (Oksanen et al., 2012) for
multivariate analyses.

Resource effects

To test the hypothesis that resources have different
effects on components of metabolism that affect BGE,
we used a linear model to test for a relationship between
BR and BP. Because BP requires energy through respi-
ration, the production rate was used as the dependent
variable and respiration rate as the independent variable.
An indicator variable linear regression was used to test
for changes in the BP rate due to BR. We included the
specific resource used and group (high- versus low-BGE)
as the categorical predictors and BR as the continuous
predictor (Lennon and Pfaff, 2005). In addition, we
included all interaction terms. Respiration and production
rates were log10-transformed to meet model assump-
tions. Last, to determine if the relationship between BR
and BP rates was isometric (proportional scaling,
slope = one) or allometric (disproportional scaling, slope

= one), a one-sample t-test was used to determine if the
slope was different from one. All statistical tests were
conducted in the R statistical environment.
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