APPENDIX S1

Primer Sequences – Forward: (515F) GTGCCAGCMGCCGCGGTAA

Reverse: (806R) GGACTACHVGGGTWTCTAAT

Primers were designed to include the Lib-L adapters (A on forward, B on reverse), 12 bp Golay barcode on Forward Primer, and sequence linker (GT on forward, GG on Reverse). For more information see Fierer et al. (2008).

PCR Reaction Conditions -

Component	Stock Concentration	Final Concentration	μl per 50 μl rxn
10X Perfect Taq Plus PCR Buffer	10X	1X	5
5P solution (5X)	5X	1X	10
dNTP mix (50 mM, 10 mM each)	40 mM	200 µM	1
Forward Primer (10 µM)	10 µM	0.2 μΜ	1
Perfect Taq Plus DNA Polymerase	5 U/µl	1.25 U/rxn	0.25
Molecular Grade Water			Add enough to make final vol 50 μl)
Added to each individual rxn			
Reverse Primer (10 µM)	10 uM	0.2 μΜ	1
Template	$\sim \! 10 ng/\mu l$	~10 ng	

PCR Thermal Cycler Conditions -

Temp
Time
Cycles

 $94^{\circ}C$ 3 mi
94^{\circ}C
3 mi

 $94^{\circ}C$ 45 sec \
50^{\circ}C
30 sec
30

 $72^{\circ}C$ 90 sec
/
72^{\circ}C
10 min

 $4^{\circ}C$ ∞ ∞ ∞ ∞

Table S1: Species-specific responses and taxonomic identity. Responses indicate significant increases (\uparrow) or decreases (\downarrow) in relative abundance in as tDOC supply rate increased. Responses are shown in regards to both the active and total communities. Clade refers to the phylogenetic group (phylum or subphylum) as inferred from best matches to the RDP taxonomy (Wang et al. 2007). Freshwater Tribe refers to the phylogenetic group as inferred from best matches to the Freshwater Bacterial Database (Newton et al. 2011). Some OTUs did not have best hits in the Freshwater Database. Known References are matches based on BLAST hits to known bacteria and are shown as a reference. Percent match and Genbank Accession are given for each.

OTU	Clade	Freshwater Tribe	Responses		Known Reference	% Match	Genbank
			Total	Active		70 Waterr	Accession
Otu100		LiUU-11-47		Ļ	Amycolatopsis niigatensis strain LC11	87%	NR_041405
Otu049				↓ ↓	Streptomyces scabrisporus strain Cac02	93%	KF317986
Otu043	3 1 3 4 6 6	acSTL-A1	1		Actinobacterium SCGC AAA028-009	100%	HQ663291
Otu041		Luna3	1	1	Microbacterium sp. LS-725	100%	KP162073
Otu053		acIII-A1	1		Actinobacterium MS-B-44	100%	FJ460158
Otu028		acl-A	ŧ		Actinobacterium SCGC AAA278-F04	100%	HQ663546
Otu106		acl-C	Ļ		Actinobacterium SCGC AAA208-D13	96%	JF488148
Otu011		acl-B1	Ļ		Rhodococcus sp. SDB1	100%	HQ659580
Otu108		acl-C	ŧ		Actinobacterium SCGC AAA280-N08	95%	HQ663635
Otu030	Alphaprotophastoria	alfVI		L L	Pseudorhodobacter sp. 4-T-34	100%	KM978076
Otu034	Alphapioleobaclena	alfl-B2	1		Oligotropha carboxidovorans strain ADB-19A	98%	KM210275
Otu101	Betaproteobacteria	betV-A1	Ļ	L L	Thauera sp. NCCP-652	92%	AB920830
Otu085		betIII-A1		L L	Alcaligenaceae bacterium AKB-2008-KU8	99%	AM989122
Otu080		betl-A		Ļ	Polaromonas sp. M63	100%	KJ649715
Otu072		betIV	1		Methylophilus methylotrophus strain HME9441	100%	KF911346
Otu110		betll	ŧ		Polynucleobacter cosmopolitanus	99%	AM110115
Otu097		gamV		L L	Dokdonella ginsengisoli strain CP14	99%	KF378756
Otu008	Gammaproteobacteria	gaml	1		Methylomonas sp. R-45383	98%	AB683103
Otu098		gamIV-A		L L	Pseudomonas putida strain SKPf11	100%	KR492889
Otu031	Epsilonproteobacteria			L L	Sulfuricurvum sp. EW1	100%	KF494428
Otu022	Bastaria data a bao	bacll	↓ ↓		Flavobacterium sp. THG-DN6.19	100%	KM035956
Otu020	Bacteriouetes	bacVI	1 t		Bacteriodetes sp. SCGC AAA027-P14	100%	HQ663214
Otu102	Cyanobacteria	Family_4.1		L L	Tolypothrix sp. Preslic8	100%	HG970654
Otu009		Family_4.1	1 T		Synechococcus sp. LS143	100%	DQ519876
Otu004			Ļ		Cyanobacterium clone N400B	95%	GU940829
Otu005		Opitutaceae		Ļ	Verrucomicrobia bacterium SCGC AAA041-M18	99%	HQ663361
Otu047	Vorneomicrobio	verl-B	Ŧ	Ļ	Spartobacteria bacterium NM5	89%	GU129926
Otu069	venuconiiciobia	verl-A	Ŧ	+	Verrucomicrobia bacterium MS-B-100	92%	FJ460141
Otu083			Ļ	Ļ	Verrucomicrobia bacterium SCGC AAA204-G18	100%	JF488114

Pond (by tDOC supply rate)

Figure S1: DOC concentrations across the tDOC supply rate gradient. DOC concentrations are given for each pond based on all time points between experimental day 60 and 100 which bounds the time points included in this study. Each pond is shown using a box-and-whisker plot across time points. The black line indicates the mean and the whiskers show the 95% confidence intervals. Ponds are ordered by supply rate along the x-axis.

Figure S2: Soluble Reactive Phosphorus (SRP) concentration time series. SRP concentration is shown based on all ponds. The black line represents the average concentration across ponds. The gray region shows the bounds based on the minimum and maximum concentrations across ponds. The dashed vertical line indicates the day of the inorganic nutrient pulse.

Figure S3B: Total phosphorus (TN) concentration time series. TN concentration is shown based on all ponds prior to the perturbation. Concentrations appear to be fairly constant. The blank line represents the average concentration across ponds. The gray region shows the bounds based on the minimum and maximum concentrations across ponds.

Literature cited

Fierer, N., M. Hamady, C. L. Lauber, and R. Knight. 2008. The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proceedings of the National Academy of Sciences USA 105:17994–17999.

Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon, and S. Bertilsson. 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75:14–49.

Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261–5267.