Trait-based approach to bacterial growth efficiency

2 Mario E. Muscarella, Xia Meng Howey, Jay T. Lennon

Supplemental Methods

Primer Sequences

6 Forward (27F): AGAGTTTGATCMTGGCTCAG

Reverse (1492R): TACCTTGTTACGACTT

8 **PCR Conditions**: Concentrations (Conc.) are given per 50 μL reaction (Rxn.). Components are from the Promega Go-Taq Kit.

Component	Stock Conc.	Final Conc	μL per 50 μL Rxn.
GoTaq Reaction Buffer	5 X	1 X	10
dNTP Mix (10 mM each)	40 mM	200 µM	1
Forward Primer (10 mM)	10 µM	0.2 μM	1
Reverse Primer (10 mM)	10 µM	0.2 μM	1
GoTaq DNA Polymerase	5 U/µL	1.25 U	0.25
Molecular Grade Water			35.75
Template DNA	10 ng/L	10 ng	1

10

4

Thermal Cycler Conditions:

Temperature (°C)	Time (sec.)	Cycles
94	180	
94	45	
50	30	30
72	90	
72	600	
4	hold	

14 Supplemental Tables

- 16 **Table S1:** Output from linear mixed-effects models describing effect of taxonomy and resource type on bacterial growth efficiency (BGE). Mixed-effects models were fit by REML using
- 18 the *lme()* function in the *nlme* R package. In these models there is a main variable and a nested variable. For each analysis, the variation explained by the main variable is accounted for before
- 20 the variation explained by the nested variable is determined. As such, these results indicate the relative importance of each variable when grouped together in a nested framework.
- 22

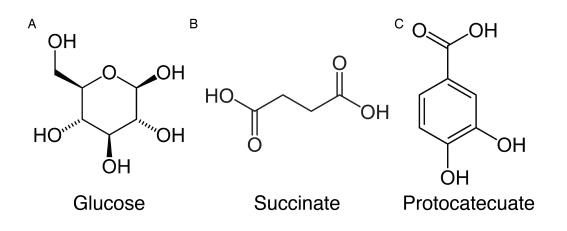
Model	Main Variable	Nested Variable	Variance Explained by Isolate	Variance Explain by Resource	AIC
Isolate Identity	Species	Resource	58.3 %	67.1 %	-48.29
Taxonomic	Order	Resource	19.9 %	27.6 %	-94.25
Order					
Resource Type	Resource	Species	7.99 %	63.2 %	-116.73

Table S2: Genome summary for the Huron Mountain Wildlife Foundation (HMWF) culture collection. Total number of genes is the number of annotated genes. Coverage estimate was calculated based on average contig coverage during assembly. MCR = module completion ratio

- Strain Genome length **# of Genes # of Pathways** Estimated Scaffold (nucleotides) (total) (MCR > 80)Coverage N50 **HMWF001** 4,588,649 4,420 15x 6,682 52 **HMWF003** 4,460,324 47 4,255 13x 14,493 **HMWF004** 5,476,832 6,021 41 5x 4,613 **HMWF005** 5,872,459 6,493 66 7x 5,177 **HMWF006** 6,285,913 6,186 57 7x 14,895 **HMWF007** 6,051,858 6,348 63 6x 8,597 **HMWF008** 3,802,708 4,018 35 11x 7,977 **HMWF009** 3,919,360 3,860 57 14x 19,491 **HMWF010** 5,890,869 6,195 66 12x 35,798 69 6,024,040 5,819 10x 30,117 **HMWF011 HMWF013** 4,611,749 4,700 58 9x 9,462 4,397,736 63 **HMWF014** 4,521 9x 11,207 67 4,658,495 4.602 12x 22,382 **HMWF015** 4,523,627 4.279 74 21x 65,781 **HMWF016** 75 **HMWF017** 4,461,702 4.205 12x 43,441 47 **HMWF018** 5,805,605 5,820 18x 15,242 **HMWF019** 6,906,470 5,867 55 19,218 15x **HMWF021** 5,954,435 5,610 66 18x 59,774 24 **HMWF022** 4,238,619 4,868 4x 3,647 56 **HMWF023** 4,584,820 4,363 14x 24,346 51 **HMWF025** 3,960,983 3,764 21x 44,746 **HMWF026** 3,392,253 3,424 50 18x 10,819 4,488,319 4,292 48 4,397 **HMWF028** 13x 4,374 61 23,346 **HMWF029** 4,650,641 20x 4,961 53 **HMWF030** 4,758,486 9x 4,075 82 **HMWF031** 10,014,416 12,286 4x 2,539 **HMWF032** 4,391,151 4,100 62 37x 583,475 72 **HMWF034** 6,119,028 5,738 26x 110,028 **HMWF035** 4,967,466 4,664 56 2x 69,493 HMWF036 4,455,344 4,269 65 11x 26,720
- 28 from Maple analysis. For additional info see GenomeStats.xlsx or NCBI PRJNA420393.

30

Table S3: DXS presence/absence in the Huron Mountain Wildlife Foundation (HMWF) culture
collection genomes. The DXS pathway (deoxyxylulose-5-phosphate synthase) is an alternative pathway for the synthesis of vitamin B₆. BGE Group: L = Low BGE group; H = High BGE


34 group. Results reported for all HMWF genomes but those used in the current study are indicated.

GENOME	DXS	BGE GROUP	USED IN THIS STUDY
HMWF003	TRUE	L	Yes
HMWF004	TRUE	L	Yes
HMWF005	TRUE	Н	Yes
HMWF006	TRUE	Н	Yes
HMWF007	TRUE	Н	Yes
HMWF008	FALSE	L	Yes
HMWF009	TRUE	L	Yes
HMWF010	TRUE	Н	Yes
HMWF011	TRUE	Н	Yes
HMWF013	TRUE	NA	No
HMWF014	TRUE	Н	Yes
HMWF015	TRUE	NA	No
HMWF017	TRUE		No
HMWF018	TRUE	Н	Yes
HMWF019	TRUE	NA	No
HMWF021	TRUE	L	Yes
HMWF022	FALSE	L	Yes
HMWF023	TRUE	L	Yes
HMWF025	TRUE	L	Yes
HMWF026	TRUE	NA	No
HMWF028	TRUE	NA	No
HMWF029	FALSE	L	Yes
HMWF030	TRUE	NA	No
HMWF031	TRUE	Н	Yes
HMWF032	TRUE	NA	No
HMWF034	TRUE	Н	Yes
HMWF036	TRUE	L	Yes
HWMF016	TRUE	Н	Yes

Supplemental Figures

- Figure S1: Carbon resources used to study BGE variation in environmental isolates. A: Glucose
 the baseline resource used to compare BGE across isolates. Glucose can be degraded by the
- 40 Embden-Meyerhof-Parnas, pentose phosphate, or Entner-Doudoroff pathway. Ultimately, these pathways produce pyruvate (and then acetyl-CoA), which enters Krebs cycle and is used to
- 42 produce energy and intermediates for biomass synthesis, when cells are grown aerobically.Alternatively, glucose can be fermented into organic acids (e.g., lactate), but these reactions yield
- less energy (Gottschalk 1986). B: Succinate a simple organic acid. Succinate is an intermediateof Krebs cycle and thus it does not require previous degradation. Additionally, succinate can be
- directly used to produce energy via succinate dehydrogenase (Neidhardt 2007). C:
 Protocatecuate is a complex resource with an aromatic core. Typically, it is degraded to acetyl-
- 48 CoA and succinyl-CoA via the β-ketoadipate pathway (Harwood and Parales 1996).
 Protocatechuate is commonly used to study aromatic resource degradation in ecosystems, and the
- 50 β-ketoadipate pathway is commonly found in bacteria across the phylum Proteobacteria (Buchan et al. 2000).

- 54 Figure S2: Maximum likelihood phylogenetic tree of lake bacterial isolates used to study BGE.Nearest relatives and other type-strains are included as a taxonomic reference. Isolates are
- 56 organized by taxonomic class. The outgroup (*Aquifex*) is included as the tree root. Scale bar represents 0.01 base substitutions. The RAxML maximum likelihood tree for just the isolates
- 58 used in the phylogenetic analyses can be found in Supp_tree.nwk.tre (Newick format).

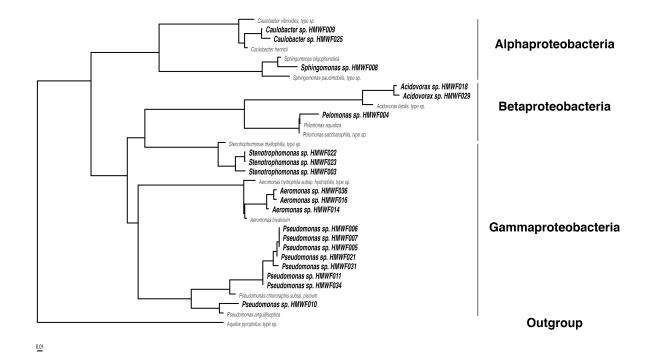
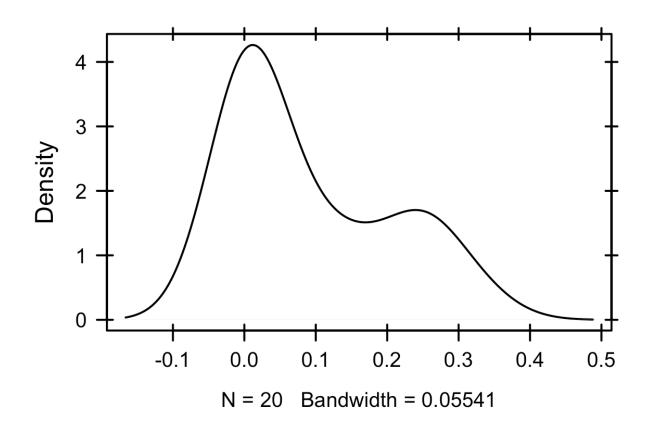



Figure S3: Kernel density of BGE when grow on glucose. Based on Hartigan's dip test, we found that there was a bimodal distribution of BGE among our isolates when supplied with glucose or succinate ($D_{glu} = 0.07$, p = 0.58; $D_{suc} = 0.08$, p = 0.30). High- and low-BGE groups were determined based on the bimodal distribution of BGE.

