
nature ECOLOGY & EVOLUTION 1, 0107 (2017) | DOI: 10.1038/s41559-017-0107 | www.nature.com/natecolevol	 1

Articles
PUBLISHED: 3 APRIL 2017 | VOLUME: 1 | ARTICLE NUMBER: 0107

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

A macroecological theory of microbial biodiversity
William R. Shoemaker†, Kenneth J. Locey†* and Jay T. Lennon

Microorganisms are the most abundant, diverse and functionally important organisms on Earth. Over the past decade, micro-
bial ecologists have produced the largest ever community datasets. However, these data are rarely used to uncover law-like 
patterns of commonness and rarity, test theories of biodiversity, or explore unifying explanations for the structure of microbial 
communities. Using a global scale compilation of >20,000 samples from environmental, engineered and host-related ecosys-
tems, we test the power of competing theories to predict distributions of microbial abundance and diversity–abundance scaling 
laws. We show that these patterns are best explained by the synergistic interaction of stochastic processes that are captured 
by lognormal dynamics. We demonstrate that lognormal dynamics have predictive power across scales of abundance, a crite-
rion that is essential to biodiversity theory. By understanding the multiplicative and stochastic nature of ecological processes, 
scientists can better understand the structure and dynamics of Earth’s largest and most diverse ecological systems.

A central goal of ecology is to explain and predict patterns 
of biodiversity across evolutionarily distant taxa and scales 
of abundance1–4. Over the past century, this endeavour has 

focused almost exclusively on macroscopic plants and animals, 
giving little attention to the most abundant and taxonomically, 
functionally, and metabolically diverse organisms on Earth: micro-
organisms1–4. However, global scale efforts to catalogue microbial 
diversity across environmental, engineered and host-related ecosys-
tems have created an opportunity to understand biodiversity using a 
scale of data that far surpasses the largest macrobial datasets5. While 
commonness and rarity in microbial systems have become increas-
ingly studied over the past decade, such patterns are rarely inves-
tigated in the context of unified relationships that are predictable 
under general principles of biodiversity.

One of the most frequently documented patterns of microbial 
diversity in recent years is the ‘rare biosphere’, which describes how 
the majority of taxa in an environmental sample are represented 
by few gene sequences6,7. While the rare biosphere has become a 
primary pattern of microbial ecology6–8, it also reflects the univer-
sally uneven nature of one of ecology’s fundamental patterns, that 
is, the species abundance distribution (SAD)9. The SAD is among 
the most intensively studied patterns of commonness and rarity. 
Furthermore, the SAD is central to biodiversity theory and macro
ecology, which aims to understand patterns in abundance, distri-
bution and diversity across scales of space and time9. However, 
microbiologists have largely overlooked the connection of the SAD 
to theories of biodiversity and macroecology, and the ability of some 
of those theories to predict other intensively studied patterns such 
as the species–area curve or distance–decay relationship10.

Since the 1930s, ecologists have developed more than 20 mod-
els that predict the SAD3. While some of these models are purely 
statistical and predict only the shape of the SAD, others encode the 
principles and mechanisms of competing theories2–4,9. Of all exist-
ing SAD models, none have been more successful than the distribu-
tions known as the lognormal and log-series, which often serve as 
standards against which other models are tested2. The lognormal 
is characterized by a right-skewed frequency distribution that 
becomes approximately normal under log-transformation; hence 
the name ‘lognormal’. Historically, the lognormal is said to emerge 
from the multiplicative interactions of stochastic processes11. 
Examples of these lognormal dynamics include the multiplicative 

nature of growth, the stochastic nature of population dynamics, 
and the energetic cost of individual dispersal across geographic dis-
tance. While most ecological processes are likely to have multipli-
cative interactions11, many theories of biodiversity (neutral theory, 
stochastic geometry, stochastic resource limitation theory) include 
a stochastic component2,12,13. Lognormal dynamics should become 
increasingly important for large communities, a result of the cen-
tral limit theorem and law of large numbers11. Yet despite being one  
of the most successful models of the SAD among communities 
of macroorganisms, the lognormal does not seem to be predicted  
by any general theory of biodiversity and is used only rarely in 
microbial studies14–18.

Like the lognormal, the log-series has also been successful in 
predicting the SAD19. Although commonly used since the 1940s, the 
log-series is the form of the SAD that is predicted by one of the most 
recent, successful and unified theories of biodiversity, that is, the 
maximum entropy theory of ecology (METE)4. In ecological terms, 
METE states that the expected form of an ecological pattern is that 
which can occur in the greatest number of ways for a given set of 
constraints, that is, the principle of maximum entropy (MaxEnt)4,20. 
METE uses only the number of species (S) and total number of indi-
viduals (N) as its empirical inputs to predict the SAD. Using the 
most comprehensive global scale data compilations of macroscopic 
plants and animals, METE outperformed the lognormal and often 
explained >​90% of variation in abundance within and among com-
munities21,22. The success of METE has made the log-series the most 
highly supported model of the SAD4. But despite its success, METE 
has not been tested with microbial data and it is unknown whether 
it can predict microbial SADs, a crucial requirement for a macro-
ecological theory of biodiversity23.

The lognormal, log-series and other models of biodiversity have 
competed to predict the SAD for several decades. However, few 
studies have gone beyond the SAD to test multiple models using 
several patterns of commonness and rarity. For example, recently 
discovered relationships show how aspects of commonness and rar-
ity scale across as many as 30 orders of magnitude, from the smallest 
sampling scales of molecular surveys to the scale of all organisms on 
Earth5. Such scaling laws are among the most powerful relationships 
in biology, revealing how one variable (for example, S) changes in 
a proportional way across orders of magnitude in another variable 
such as N. However, the mechanisms that give rise to these scaling 
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laws were not reported and it remains to be seen whether any bio-
diversity theory can predict and unify them. It also remains to be 
seen whether the model that best predicts the SAD would also best 
explain how aspects of commonness and rarity scale with N.

In this study we ask whether the lognormal and log-series can 
reasonably predict microbial SADs, and whether either model can 
reproduce recently discovered diversity–abundance scaling rela-
tionships5. We used a compilation of 16S ribosomal RNA (rRNA) 
community-level surveys from more than 20,000 unique locations, 
ranging from glaciers to hydrothermal vents to hospital rooms. We 
contextualize the results of the lognormal and the log-series against 
two other well-known SAD models: one that predicts a highly 
uneven form (the Zipf distribution), and one that predicts a highly 
even form (the simultaneous broken-stick). As general theories 
of biodiversity should make accurate predictions regardless of the 
size of a sample, community, or microbiome, we tested whether the 
performance of these four long-standing models is influenced by 
sample abundance (N), which is a primary constraint on the form 
of the SAD. We discuss our findings in the context of greater unifi-
cation across domains of life, paradigms of biodiversity theory, and 
in the context of how lognormal dynamics may underpin microbial 
ecological processes.

Results
Predicting distributions of microbial abundance. The lognormal 
explained nearly 94% of the variation within and among micro-
bial SADs, compared with 91% for the Zipf distribution and 64% 
for log-series predicted by METE (Fig. 1, Table 1). In addition, the 
lognormal consistently had the highest corrected Akaike informa-
tion criteria (AICc) weight in a bootstrap analysis and was on aver-
age the best fitting model 57% of the time (Supplementary Fig. 6,  
Supplementary Table 6). The performance of the simultaneous  

broken-stick (hereafter referred to as the broken-stick) was too 
poor to be evaluated using the modified coefficient of determina-
tion (r2

m). Although close to the predictive power of the lognormal, 
the Zipf distribution greatly over-predicted the abundance of the 
most abundant taxa (Nmax). In some cases, the predicted Nmax was 
greater than the empirical value for sample abundance (N). The 
Zipf distribution was also sensitive to the exclusion of singleton 
operational taxonomic units (OTUs) and percent cutoff in sequence 
similarity (Supplementary Table 3, Supplementary Fig. 3). In this 
way, the Zipf reasonably predicts the abundance of intermediately 
abundant taxa, but often fails for the most dominant and rare taxa 
(Supplementary Tables 1 and 2)22,24. In contrast to the other models, 
the lognormal produced unbiased predictions for the abundances 
of dominant and rare taxa, regardless of cutoffs in percent similarity 
and the exclusion of singleton OTUs (Supplementary Figs 1 and 2, 
Supplementary Tables 1 and 2).

Predictive power across scales of sample abundance. The perfor-
mance of SAD models across scales of N is rarely, if ever, examined. 
While the log-series has been successful among communities of 
macroscopic plants and animals21,22, for the vast majority of these 
samples N was less than a few thousand organisms21,22. In contrast, 
the log-series predicted by METE has yet to be tested using micro-
bial data, that is, where N often represents millions of sampled 16S 
rRNA gene reads.

We found that the lognormal performed well across all orders of 
magnitude in N, with no indication of weakening at higher orders 
of magnitude. The performance of METE’s log-series, however, was 
much more variable and often provided fits to microbial SADs that 
were too poor to interpret. As a result, the form of the SAD predicted 
by the most successful theory of biodiversity for macroorganisms 
(that is, METE) failed across orders of magnitude in microbial N. 
This was the case for SADs from different systems and within SADs 
that were resampled to smaller N (Fig.  2, Supplementary Fig. 3).  
While the Zipf distribution also provided reasonable fits that 
improved with increasing N, the broken-stick increasingly failed for 
greater N. This latter result supports previously documented pat-
terns of decreasing species evenness with increasing N5,25; a trend 
that the lognormal captures without apparent bias.

Diversity–abundance scaling laws. Recently, aspects of taxonomic 
diversity have been shown to scale with N at rates similar to molec-
ular surveys of microorganisms and individual counts of macro
organisms5. These aspects of diversity include dominance (the 
abundance of the most abundant OTU; Nmax), evenness (similarity 
in abundance among OTUs) and rarity (concentration of taxa at  
low abundances). We found that the lognormal best reproduced 
these diversity–abundance scaling relationships5 (Table  2, Fig.  3). 
While the Zipf approximated the rate at which Nmax scaled with N, 
it greatly over-predicted the y-intercept and, hence, the actual value 
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Figure 1 | Forms of predicted SADs in rank abundance form, that is, 
ordered from the most abundant species (Nmax) to the least abundant on 
the x axis.  The grey line represents one SAD that was randomly chosen 
from our data. Each model was fit to the observed SAD; see Methods. The 
broken-stick is known to produce an overly even SAD. The log-series often 
explains SADs for plant and animal communities but has gone untested 
among microorganisms22. The Zipf distribution is a power-law model that 
produces one of the most uneven forms of the SAD, often predicting more 
singletons and greater dominance (Nmax) than other models. Finally, the 
Poisson lognormal, a lognormal model with Poisson-based sampling error, 
tends to be similar to the unevenness of the Zipf distribution, but predicts 
more realistic Nmax. Importantly, each model used here predicts an SAD 
with the same richness of the observed SAD, which is often not the case in 
other studies that fail to use maximum likelihood expectations24.

Table 1 | Comparison of the performance of SAD models for 
microbial datasets.

Model Mean r2
m Standard error

Lognormal 0.94 0.0044

Zipf 0.91 0.0031

Log-series 0.64 0.014

Broken-stick −​0.32 0.034
The mean site-specific modified r-square (r2

m) and standard error for each model from 
10,000 bootstrapped samples of 200 SADs: broken-stick, the log-series predicted by METE, 
the lognormal and the Zipf power-law distribution. The lognormal and the Zipf provide the 
best predictions for how abundance varies among taxa. The lognormal and the Zipf are also 
characterized by lower standard errors than the broken-stick and the log-series.
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of Nmax (Fig.  3). Additionally, neither the log-series predicted by 
METE nor the broken-stick came close to reproducing the observed  
diversity–abundance scaling relationships (Fig. 3, Table 2).

Discussion
In this study, we asked whether widely known and successful mod-
els of biodiversity could predict microbial SADs and also unify 
SADs with recently discovered diversity–abundance scaling laws. 
We found that the lognormal provided the most accurate predic-
tions for nearly all patterns in our study. This is in sharp contrast 
to studies of macroorganisms where the log-series distribution pre-
dicted by METE was overwhelmingly supported21,22. Such discrep-
ancies in model performance suggest that there are fundamental  
differences between macroorganisms and microorganisms that 
point to the importance of lognormal dynamics. Specifically, that 
multiplicative processes (such as growth) and stochastic outcomes 
(such as population fluctuations) produce a central limiting pattern 
within large and heterogeneous communities where species parti-
tion multiple resources11. Instead of identifying a particular process 
(for example, dispersal limitation, resource competition) or a set of 
specific environmental factors (such as, pH, temperature), we pro-
pose that lognormal dynamics underpin the fundamental nature of 
microbial communities11,12.

There are fundamental differences in how ecologists study com-
munities of microscopic and macroscopic organisms. As ecologists 
tend to sample microbial communities on spatial scales that greatly 
exceed the scales of their interactions, samples of microbial com-
munities are likely to lump together many ecologically distinct taxa 
that do not partition the same resources or occupy the same micro-
habitats26. If microbial studies commonly lump together species 
that belong to different ecological communities, then this may lead  
to the emergence of a power-law SAD (for example, the Zipf)27.  

We expect that the increasing performance of the Zipf with greater 
N is evidence of a power-law SAD arising from the mixture of log-
normal microbial communities. Although the connection between 
the lognormal and the Zipf needs further study, a macroecological 
theory of microbial biodiversity should allow for this dynamic.

In our macroecological study, we used data that microbial ecolo-
gists have collected and made available (16S rRNA sequences). As is 
well known, these amplicon-based data may contain artefacts that 
potentially affect the shape of microbial SADs. We accounted for 
some of these artefacts by testing for the effects of the sequence 
similarity percent cut-off used to cluster OTUs, as well as the influ-
ence of singletons and sample size. There are also caveats that we 
could not address. First, we used the post-processed sequence 
abundances and OTU classifications provided in publically avail-
able datasets5,25. While different methods for processing amplicon 
reads may influence the shape of the SAD, we did not have the 
resources and computational capacity to re-process all of the raw 
sequence data from our various datasets. Second, the number of 
sampled 16S rRNA sequences is not equivalent to the number of 
cells in a sample. Instead of assuming this equivalency, we assumed 
that SADs based on 16S rRNA sequences are similar to those based 
on organismal abundances, as is common in microbial community 
studies. Future studies may reveal whether or not this assumption 
is justified.

Finally, in rejecting the log-series as a model for microbial SADs, 
we are not rejecting METE altogether. We are instead rejecting the 
log-series as METE’s primary form of the SAD4. In fact, METE 
seems capable of predicting both the lognormal and the Zipf28. This 
is because in using METE, one tries to infer the most likely form of 
an ecological pattern for a particular set of variables such as N and S 
and constraints such as N/S. Consequently, the forms of ecological 
patterns predicted by METE could change depending on the con-
straints and state variables used28. For example, METE predicts that 
the SAD is a power law if it constrains the SAD to N/S while includ-
ing a resource variable28. However, METE has not been developed to 
predict forms of the SAD other than the log-series and it remains to 
be seen whether METE can predict the form of the lognormal (that 
is, Poisson lognormal) used in our study. If so, and if it can reconcile 
why a log-series SAD works best for macroorganisms and a log
normal works best for microorganisms, then METE may indeed be 
a unified theory of biodiversity. Until then, microbial communities 
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Figure 2 | Relationships between predicted abundance and observed 
abundance. All species of all examined SADs are plotted; hotter colours 
(such as red) reveal a greater density of species abundances. The black 
diagonal line is the 1:1 line, around which a perfect prediction would fall. 
Insets show histograms of the per-SAD modified r-squared (r2

m) values 
from a range of zero to one, with left-skewed histograms suggesting a 
better fit of the model to the data. The value at the top-left of each sub-plot 
is the mean r2

m value for 10,000 bootstrapped samples (see Methods). 
Each dot represents the observed abundance versus the predicted 
abundance for each species in the data.

Table 2 | The lognormal comes closest to reproducing the  
scaling exponents of diversity–abundance scaling relationships5.

Model Diversity metric Slope Difference (%)

Lognormal Nmax 1.0 1.5

Evenness −​0.48 42.0

Skewness 0.10 23.0

Zipf Nmax 1.0 0.28

Evenness −​0.53 53.0

Skewness 0.086 41.0

Log-series Nmax 0.86 16.0

Evenness −​0.16 66.0

Skewness 0.048 92.0

Broken-stick Nmax 0.73 32.0

Evenness −​0.022 170.0

Skewness 0.014 160.0
These scaling relationships pertain to absolute dominance (Nmax), Simpson’s metric of species 
evenness and skewness of the SAD. The percent difference is given between the scaling exponents 
predicted from each SAD model and the mean of the scaling exponents for the EMP, HMP, and 
MG-RAST reported in Table 1 of ref. 5, that is, where the mean for Nmax was 1.0, the mean for 
evenness was −​0.48, and the mean for skewness was 0.10. P <​ 0.0001 for all scaling exponents.
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and microbiomes seem to be shaped by the multiplicative interactions  
of stochastic processes that, although highly complex, inevitably 
lead to predictable patterns of biodiversity.

Methods
Data. We used one of the largest compilations of microbial community and 
microbiome data to date, consisting of bacterial and archaeal community  
sequence data from over 20,000 unique geographic sites. These data were  
compiled in a previous study5 and include 14,962 sites from the Earth  
Microbiome Project (EMP)29, 4,303 sites from the Data Analysis and  
Coordination Center (DACC) for the National Institutes of Health (NIH) 
Common Fund supported Human Microbiome Project (HMP)30 and  
1,319 non-experimental sequencing projects consisting of processed 16S rRNA 
amplicon reads from the Argonne National Laboratory metagenomics server  
MG-RAST31. All sequence data were previously processed using established 
pipelines to remove low-quality sequence reads and chimeras29–31. Additional 
information pertaining to the datasets can be found in the Supplementary 
Information and in previous studies5.

To assess the effect of sequence similarity on the fit of SAD models we  
analysed the same collection of MG-RAST data with different percent cutoffs.  
This collection was analysed at minimum percent sequence similarities of 95,  
97 and 99% to the closest reference sequence in MG-RAST’s M5 rRNA database, 
with a maximum e value (probability of observing an equal or better match in 
a database of a given size) of 10−5 and a minimum alignment length of 50 base 
pairs32–37. As we did not have the computational capacity or resources to reclassify 
all sequences from all samples of each project, we used the sampled sequence 
abundances and OTU classifications provided in each study, as was done in similar 
scale studies of large microbial data compilations5,25. In addition, we assume that 
the criterion for an OTU holds across microbial taxonomic groups, though we 
acknowledge this as a potential source of error.

Similar to the majority of SAD studies, we cannot confirm that our  
data are representative random samples of their respective environments.  
While systemic methodological artefacts across a few studies of particular 
environments could produce systemic biases, our study rests on an implicit 
macroecological assumption, that many thousands of independently gathered  
data points from a diversity of studies and methods are unlikely to produce the 

same artefact. Though 16S rRNA amplicon sequencing has several limitations, 
makes assumptions that are likely to be unrealistic (for example, several 
ecologically distinct taxa may be clustered as a single OTU) and is inherently 
limited by the fact that the number of 16S sequences is not equal to the number 
of individuals in a community, it is still one of the most widely used methods in 
microbial ecology and is regularly used to examine the structure and composition 
of natural and man-made microbiomes. Additional information pertaining to the 
datasets can be found elsewhere5.

Description of SAD models. In this study we ask whether the lognormal,  
log-series and two other classic SAD models that have some success in  
microbial ecology (the simultaneous broken-stick12 and the Zipf distribution38,39), 
can reasonably predict microbial SADs (Fig. 4). We evaluated the performance of 
each model with and without singletons and across different percent cutoffs for 
sequence similarity used to cluster 16S rRNA reads into OTUs.

Lognormal. To avoid fractional abundances and to account for sampling error, we 
used a Poisson-based sampling model of the lognormal, which is known as the 
Poisson lognormal40. We used the maximum likelihood estimate of the Poisson 
lognormal as our species abundance model of lognormal dynamics. The likelihood 
estimate of the single composite parameter λ (composed of two parameters, 
the mean (μ) and standard deviation (σ)) of the Poisson lognormal is derived 
via numerical maximization of the likelihood surface40. Once λ is found, the 
probability that a randomly chosen species is represented by n individuals ( p(n)) 
under the Poisson lognormal (hereafter lognormal) is derived using:

∫ λ=
λ

λ λ

∞
−

p n e
n

p( )
n

0
LN( )d

where pLN is the lognormal probability.
Although the validity of the lognormal has previously been criticized as an 

appropriate null model for SADs, we chose to use the lognormal in our study for 
four reasons41. First, the primary source of criticism was based on results from 
a handpicked dataset of only three macrobial SADs. Second, the authors of the 
primary criticism did not use the Poisson lognormal described here, which has 
long been the recommended form. Third, the authors hold against the lognormal 
the historical shortcomings of fitting SADs by eye, an issue that is not relevant 
here, as we have designed our study to be quantitative and replicable. Finally, rather 
than use the lognormal as a null model, we frame the lognormal as capturing the 
multiplicative and stochastic nature of microbial community dynamics.

METE. METE uses only two empirical inputs to predict the SAD: species richness 
(S) and total abundance (N) of individuals (or sequence reads) in a sample.  
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Figure 3 | The relationship of model performance to the total number of 
16S rRNA reads (N).  The modified coefficient of determination (r2

m) is the 
variation in the observed SAD that is explained by the predicted SAD (as 
in Fig. 2). The performance of the broken-stick model and of the log-series 
distribution predicted by the maximum entropy theory of ecology (METE) 
decreases for greater N. With the exception of a small group of points, the 
lognormal provides r2

m values of 0.95 or greater across scales of N. The Zipf 
provides a better explanation of microbial SADs with increasing N. The grey 
dashed horizontal line is placed where the r2

m equals zero. The r2
m can take 

negative values because it does not represent a fitted relationship, that is, 
the y-intercept is constrained to 0 and the slope is constrained to 1. Results 
from the simple linear regression can be found in Supplementary Table 1.
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log-series (c) are capable of providing meaningful predictions of Nmax.
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To predict the SAD, METE assumes that the expected shape of the SAD  
is that which can occur in the highest number of ways, an assumption  
based on the principle of MaxEnt20. Using METE, the shape of the SAD  
was predicted by calculating the probability (Φ) that the abundance of a  
species is n given S and N:

Φ
β

| =
β

−

−
n S N e

n
( , ) 1

log( )

n

1

where β is a fitted energetic parameter representing the community-scaled  
metabolic rate. β is derived using numerical optimization and the  
following equation:

=
∑

∑

β

β
=

−

=
−

N
S

e

e n/
n
N n

n
N n

1

1

where N/S is the average abundance among species. This approach to predicting 
the MaxEnt form of the SAD yields the log-series distribution4,19.

It is worth noting that METE yields a Zipf distribution with an exponential 
cutoff if a resource in addition to energy (that is ideally energy-independent)  
is allocated across individuals (for example, space)28,42. Given that microbial  
cell density can be extremely high in certain systems (for example, a gram  
of soil can contain 1010 cells), it is possible that that the inclusion of space  
as a resource, measured in appropriate units, would increase the performance  
of METE for microbial systems. Unfortunately, there is little available  
microbial spatial data. In addition, METE can potentially predict the lognormal42. 
However, neither of these alternate forms of METE have been sufficiently 
developed or tested.

Broken-stick. The broken-stick model predicts a high similarity in abundance 
among species and, hence, predicts one of the most even SADs of any model. The 
broken-stick model predicts the SAD as the simultaneous breaking of a stick of 
length N at S −​ 1 randomly chosen points12. The broken-stick also has a purely 
statistical equivalent, that is, the geometric distribution43,44, where f(k) is the 
probability mass function for k trials with probability p of success:

= − −f k p p( ) (1 )k 1

The broken-stick has no free parameters and predicts only one form of the 
SAD for a given combination of N and S. Although rarely recognized, METE 
predicts a geometric distribution form of the SAD if energy (that is, β from the 
log-series) is not included as a state variable, with the constraint arising from 
an empirical value for the ratio N/S. The geometric distribution is a maximum 
entropy solution when N and S are the only state variables, with the constraint 
arising from the empirical value of the ratio N/S.

Zipf distribution. The Zipf distribution (also known as the discrete Pareto 
distribution) is a power-law model that predicts one of the most uneven forms  
of the SAD. This distribution is based on a power-law of the frequency of  
ranked data and is characterized by one parameter (γ), where the frequency  
of the kth rank is inversely proportional to k: p(k) ≈​ kγ, with γ often ranging 
between −​1 and −​238,45–47. The Zipf distribution predicts the frequency of elements 
of rank k out of N elements with parameter γ as:

γ =
∑

γ

γ
=

f k N k
n

( ; , ) 1 /
(1 / )n

N
1

We calculated the maximum likelihood estimate of γ using numerical 
maximization, which was then used to generate the predicted form of the SAD.

Testing SAD predictions. Our SAD predictions were based on the rank  
abundance form of the SAD. This form is a vector of species abundances  
ranked from most to least abundant (Fig. 4). As the predicted form of each  
model preserves the number of observed species (S), we were able to directly 
compare (rank-for-rank) the observed and predicted SADs using regression 
analysis to find the percent of variation in abundance among species that is 
explained by each model. We generated the predicted forms of the SAD  
using previously developed code21 (https://github.com/weecology/white-etal-2012-
ecology) and the public repository macroecotools (https://github.com/weecology/
macroecotools).

To prevent bias in our results due to the overrepresentation of a particular 
dataset, we performed 10,000 bootstrap iterations using a sample size of 200  
SADs drawn randomly from each dataset. The sample size was determined  
based on the number of SADs that the numerical estimator used to generate 
the Zipf distribution was able to solve for the smallest dataset (239 SADs from 
MG-RAST). This was necessary because numerical optimization can fail to arrive 
at a maximum likelihood solution (or take an exhaustively long time) for the 
parameter(s) of a given model. We then calculated the modified coefficient of 

determination around the 1:1 line (as per previous tests of METE21,25,47) with the 
following equation:

= −
∑ −
∑ −

r 1
(log(obs ) log(pred ))
(log(obs ) log(obs ))

i i

i i
m
2

2

2

where obsi and predi represent the observed and predicted abundance of the 
ith species, respectvively. It is possible to obtain negative r2

m values because the 
relationship is not fitted, but instead is performed by estimating the variation 
around the 1:1 line with a constrained slope of 1.0 and a constrained intercept  
of 0.0 (refs 21,25,47). Furthermore, we performed an extensive analysis using 
previously established methods22 where we compared the fits of all four models 
using AICc weights, correcting both for the number of species observed in each 
site and the number of fitted parameters in each model. We then selected the 
model with the largest AICc weight as the best fitting model for that particular 
site. To prevent bias due to the overrepresentation of a particular dataset, we 
performed the same bootstrap analysis that was done for the r2

m. We have provided 
the mean, standard deviation and kernel density estimates of the log-likelihood 
and parameter values for all models that contain a free parameter (Supplementary 
Table 5, Supplementary Fig. 5).

Diversity–abundance scaling relationships. To determine whether the SAD 
models tested here can explain previously reported diversity–abundance scaling 
relationships5, we first calculated the values of Nmax, Simpson’s measure of species 
evenness and the log-modulo of skewness as a measure of rarity derived from 
predicted SADs of each model, as in ref. 5. We examined these diversity metrics 
against the values of N in the observed SADs. We used simple linear regression 
on log-transformed axes to quantify the slopes of the scaling relationships, 
which become scaling exponents when axes are arithmetically scaled, that is, 
log(y) =​ zlog(x) is equivalent to y =​ xz, where z is the slope and scaling exponent. 
These scaling exponents were compared to the reported exponents5. We calculated 
the percent difference between the diversity metrics reported by each SAD model 
and the mean of the exponents reported for the EMP, HMP and MG-RAST datasets.

We could not assess the ability of the SAD models to predict the scaling 
relationship of S to N, as in ref. 5. This was because all of the SAD models used in 
our study return SADs with the same value of S as the empirical form.

Influence of total abundance on model performance. We used ordinary least-
squares regression to assess the relationship between the performance of each 
SAD model and the number of sequences in a given sample (N). While the aim of 
our study was to capture the influence of N on SAD model performance, we also 
rarefied within SADs. We performed bootstrapped resampling on rarefied sets of 
SADs to determine the influence of subsampled N on model performance. This 
bootstrap sampling procedure consisted of sampling SADs at given fractions of 
sample N and then calculating the mean r2

m, repeating 100 times for each model. 
SADs were sampled at 50, 25, 12.5, 6.25, 3.125 and 1.5625% of sample N. This 
subsampling analysis was computationally exhaustive and required SADs with N 
large enough to be halved six times and still large enough to be analysed with SAD 
models. Likewise, we used only SADs for which predictions from each SAD model 
could be obtained at each scale of subsampled N. Altogether, we were able to use 
ten SADs that met these criteria.

Computing code. We used open source computing code to obtain the maximum-
likelihood estimates and predicted forms of the SAD for the broken-stick, 
the lognormal, the prediction of METE (log-series distribution), and the Zipf 
distribution (https://github.com/weecology/macroecotools, https://github.
com/weecology/METE). This is the same code used in studies that showed 
support for METE among communities of macroscopic plants and animals22–24. 
All analyses can be reproduced or modified for further exploration by using 
the code, data and directions provided here: https://github.com/LennonLab/
MicrobialBiodiversityTheory.

Data availability. All data used in this study can be found in the public GitHub 
repository MicrobialBiodiversityTheory (https://github.com/LennonLab/
MicrobialBiodiversityTheory).
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