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1 Variant calling13

The first 20 bp of all reads were trimmed and all read pairs where at least one14

pair had a mean Phred quality less than 20 were removed cutadept v1.9.115

[1]. Candidate variants were identified by modifying the codebase of a previ-16

ously published approach under GPL v2 [2]. We provide a brief overview of the17

method used in Good et al. (2017) and all alterations made, though we direct18
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the reader to the original publication for an in-depth account of the pipeline.19

Using breseq v0.32.0 [3] to align trimmed reads to the reference genome, we20

generated a list of candidate junctions for all samples. Candidate junctions were21

merged across temporal samples for each taxon using gdtools, which was then22

passed as an argument to a second round of breseq using --user-evidence-gd.23

Using samtools mpileup [4] and open access Python scripts from [2], we iden-24

tified candidate SNVs and small indels from BAM files generated by the second25

breseq run. We defined trajectories of ordered pairs (Apmt, Dpmt) for the al-26

ternative allele count and total depth of coverage for mutation m in sample t27

from population p. Alternative alleles for indels < 100bp are merged as a sin-28

gle ”compound” mutation trajectory. Indels ≥ 100bp are considered structural29

variants and are processed with candidate junctions identified by breseq.30

Candidate junctions were processed using a custom Python script that merges31

similar candidate junctions from the same population into a single ”compound”32

junction candidate. Each of these candidates was recorded as a single trajectory33

(Apmt, Dpmt). We examined all candidate mutations with Apmt ≥ 2 in at least34

two samples and Dpmt ≥ 10 in at least one samples, with an observed frequency35

fpmt ≡ Apmt/Dpmt ≥ 0.05 .36

Statistical support of each candidate mutation was established using two37

summary statistics: 1) the autocorrelation of frequencies between timepoints38

(C∗) and 2) the derived allele sojourn weight (I). Both functions are described39

at length in Good et al. (2017). For our purposes here C∗ can be described as40

a modified form of the autocorrelation function41

C ≡
∑
t

(
ft+1 − f

) (
ft − f

)
(1)

where ft is the frequency of the mutation at a given timepoint and f is the42

mean frequency over the entire timecourse. We use a modified form of this func-43
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tion that has the same purpose, but accounts for discreteness and uncertainty44

in ft due to finite coverage.45

The derived allele sojourn time is less intuitive. C∗ treats positive and neg-46

ative deviations from the mean the same way (i.e., symmetric). Real mutations47

can have low frequencies for extended periods of time. A large area under this48

allele frequency trajectory curve would suggest that this mutation is not an er-49

ror. To capture this trend, the statistic in Good et al. (2017) examines runs of50

2 or more timepoints where ft is larger than a threshold frequency f∗ for that51

entire run. The run with the largest value of52

I =

t2∑
t=t1

= ft − f∗ (2)

The value of f∗ was chosen using the criteria in Good et al. to be as low as53

possible while allowing for error rates higher than 1/Dt (2017).54

The two P -values were merged as a composite P -value using the following55

function:56

T =
∑
k

θ (P ∗ − Pk) log

(
1

Pk

)
(3)

where θ(·) is the Heaviside step function and P ∗ = (0.05)1/2. Significance57

was assessed by calculating the null distribution of T for all mutations and58

nonsignificant mutations were removed from downstream analyses. We did not59

include the third statistic, the average frequency relaxation time, used in Good60

et al. due to fact that our experiment covers a relatively brief evolutionary61

timescale ( 3,000 generations vs. 60,000) (2017). We annotated all mutations62

as described in Good et al. (2017).63
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2 Mutation trajectory inference64

We use the naive estimator f̂pmt = Apmt/Dpmt as our measure of mutation65

frequency. We examined mutation accumulation as66

M(t) ≡
∑
m

f̂pmt (4)

a measure that uses information from mutation frequencies in addition to67

the number of mutations in the population.68

To infer whether a high frequency mutation is present in all individuals (i.e.,69

”fixed”), we used the hidden Markov model introduced in Good et al. with70

(Amt;Dmt) as the observed sequence of emissions (2017). To briefly summarize71

this model, mutations start in an ancestral state A where fmt = 0. At each72

timepoint mutations can transition to a polymorphic state P where the fre-73

quency remains as 0 < fmt < 1. From here the mutation can either transition74

to a fixed state F or go extinct E. E states are allowed to re-appear as A, though75

multiple mutations occurring at the same site is a rare event. The behavior of76

the HMM was fairly insensitive to the chosen initial transition probabilities, so77

we set the initial transition probabilities to those in Good et al. (2017).78

3 Parallelism and divergence79

We identified potential targets of selection by examining the distribution of80

nonsynonymous mutations across genes. The statistical framework of this ap-81

proach was developed in Good et al. (Good et al., 2017). To briefly summarize,82

gene-level parallelism was assessed by calculating the multiplicity of each gene83

as84

mi = ni ·
L

Li
(5)
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where ni and Li is the number of mutations observed and the length of85

the ith gene and L is the mean length of all genes. Under this definition, the86

null hypothesis is that all genes have the same multiplicity m = ntot/Ngenes.87

Using the observed and expected values, we can quantify the net increase of the88

log-likelihood of the alternative hypothesis relative to the null89

∆` =
∑
i

nilog
(mi

m

)
(6)

where significance is assessed using permutation tests. Because this measure90

can be sensitive to ntot, for comparisons across different strains and treatments91

we randomly sub-sampled mutations as a multinomial distribution, where the92

probability of sampling a mutation at gene i was given by pi = ni/ntot. Multi-93

nomial sampling was performed 10,000 times with a sub-sampled ntot set to94

50.95

To identify specific genes that are enriched for mutations, we calculated the96

P -value of each gene as97

Pi =
∑
n≥ni

(
ntotLi

LNgenes

)n
n!

e
− ntotLi

LNgenes (7)

where FDR correction was performed by defining a critical P -value (P ∗)98

based on the survival curve of a Poisson distribution, the null hypothesis (see99

Good et al., 2017 for additional details). We then defined the set of significant100

genes for each treatment-strain combination as:101

I = {i : Pi ≤ P ∗ (α)} (8)

for α = 0.05.102
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PC Transition ρ2 P
1 A : T→ C : G 0.906 < 10−4

G : C→ T : A 0.746 < 10−4

G : C→ C : G 0.627 0.015
2 A : T→ G : C 0.758 0.002

G : C→ A : T 0.657 0.015

Table S1: Factor loadings that are significantly correlated with the first and
second components of the PCA visualized in Fig. 2.
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Genus Treatment Locus tag nmut fixed nmut fmax ≥ 0.8 Annotation

Bacillus 1-day B4U62 RS00170 1 1 23S ribosomal RNA

Bacillus 1-day B4U62 RS00390 1 1 stage II sporulation protein E

Bacillus 1-day B4U62 RS00585 1 1 DNA integrity scanning protein DisA

Bacillus 1-day B4U62 RS00685 1 1 DNA-directed RNA polymerase subunit beta

Bacillus 1-day B4U62 RS01310 1 3 APC family permease

Bacillus 1-day B4U62 RS01735 1 3 DUF475 domain-containing protein

Bacillus 1-day B4U62 RS01940 1 1 Assimilatory nitrate reductase catalytic subunit

Bacillus 1-day B4U62 RS01950 1 1 NarK/NasA family nitrate transporter

Bacillus 1-day B4U62 RS02045 1 1 Surfactin biosynthesis thioesterase SrfAD

Bacillus 1-day B4U62 RS02495 2 2 Divalent metal cation transporter

Bacillus 1-day B4U62 RS02855 1 1 Endopeptidase

Bacillus 1-day B4U62 RS03535 1 1 Tetratricopeptide repeat protein

Bacillus 1-day B4U62 RS03840 1 1 Diacylglycerol kinase

Bacillus 1-day B4U62 RS04785 1 1 Glycosyltransferase

Bacillus 1-day B4U62 RS04835 1 1 Aromatic acid exporter family protein

Bacillus 1-day B4U62 RS04860 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS04890 1 1 tRNA-Glu

Bacillus 1-day B4U62 RS05145 1 1 Cold-shock protein

Bacillus 1-day B4U62 RS05175 1 2 YhcN/YlaJ family sporulation lipoprotein

Bacillus 1-day B4U62 RS05315 1 1 Citrate synthase

Bacillus 1-day B4U62 RS05375 1 1 MerR family transcriptional regulator

Bacillus 1-day B4U62 RS05430 2 2 Na+/H+ antiporter NhaC

Bacillus 1-day B4U62 RS05510 1 1 Cation:proton antiporter

Bacillus 1-day B4U62 RS05555 1 1 3’-5’ exoribonuclease YhaM

Bacillus 1-day B4U62 RS06285 1 1 Beta-ketoacyl synthase II

Bacillus 1-day B4U62 RS06330 2 3 Peptide ABC transporter protein

Bacillus 1-day B4U62 RS06345 1 1 ABC transporter ATP-binding protein

Bacillus 1-day B4U62 RS06650 1 1 BglG family transcription antiterminator
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Bacillus 1-day B4U62 RS06735 1 1 DUF4309 domain-containing protein

Bacillus 1-day B4U62 RS06775 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS07360 1 1 MerR family transcriptional regulator

Bacillus 1-day B4U62 RS07420 1 1 DedA family protein

Bacillus 1-day B4U62 RS07740 1 1 Chemotaxis protein CheV

Bacillus 1-day B4U62 RS07750 1 2 MFS transporter

Bacillus 1-day B4U62 RS08325 1 1 16S rRNA methyltransferase

Bacillus 1-day B4U62 RS08410 1 1 Sigma-E processing peptidase SpoIIGAv

Bacillus 1-day B4U62 RS08450 1 1 Cell division protein SepF

Bacillus 1-day B4U62 RS08580 1 1 Calcium-translocating P-type ATPase

Bacillus 1-day B4U62 RS08605 1 1 Bifunctional ligase CoaBC

Bacillus 1-day B4U62 RS08680 1 1 L-serine ammonia-lyase subunit beta

Bacillus 1-day B4U62 RS08785 1 1 Ribonuclease HII

Bacillus 1-day B4U62 RS08870 1 1 Flagellar assembly protein FliH

Bacillus 1-day B4U62 RS08950 1 1 Flagellar biosynthesis protein FlhB

Bacillus 1-day B4U62 RS08955 1 1 Flagellar biosynthesis protein FlhA

Bacillus 1-day B4U62 RS09075 1 1 Translation initiation factor IF-2

Bacillus 1-day B4U62 RS09090 1 1 tRNA pseudouridine(55) synthase TruB

Bacillus 1-day B4U62 RS09270 1 1 DNA mismatch repair protein MutS

Bacillus 1-day B4U62 RS09345 1 1 Amino acid adenylation domain-containing protein

Bacillus 1-day B4U62 RS09350 1 1 SDR family NAD(P)-dependent oxidoreductase

Bacillus 1-day B4U62 RS09485 1 1 Transcriptional repressor GlnR

Bacillus 1-day B4U62 RS09645 1 1 SRPBCC domain-containing protein

Bacillus 1-day B4U62 RS09965 1 1 Amino acid adenylation domain-containing protein

Bacillus 1-day B4U62 RS10230 1 1 DUF3221 domain-containing protein

Bacillus 1-day B4U62 RS10440 1 1 GNAT family N-acetyltransferase

Bacillus 1-day B4U62 RS11410 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS11595 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS12015 1 1 2-dehydro-3-deoxygluconokinase

Bacillus 1-day B4U62 RS12140 1 1 Endonuclease III
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Bacillus 1-day B4U62 RS12150 1 1 Asparagine–tRNA ligase

Bacillus 1-day B4U62 RS12315 1 1 Chorismate mutase

Bacillus 1-day B4U62 RS12420 1 2 30S ribosomal protein S1

Bacillus 1-day B4U62 RS12755 1 1 Transcriptional repressor

Bacillus 1-day B4U62 RS12770 1 1 NAD-dependent malic enzyme

Bacillus 1-day B4U62 RS13010 1 1 Multidrug efflux MFS transporter Bmr

Bacillus 1-day B4U62 RS13070 1 1 Citrate synthase

Bacillus 1-day B4U62 RS13110 3 3 Sporulation transcription factor Spo0A

Bacillus 1-day B4U62 RS13470 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS13740 1 1 50S ribosomal protein L11 methyltransferase

Bacillus 1-day B4U62 RS14145 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS14390 4 4 Cation transporter

Bacillus 1-day B4U62 RS14670 1 2 TetR/AcrR family transcriptional regulator

Bacillus 1-day B4U62 RS14745 1 1 Transcription elongation factor GreA

Bacillus 1-day B4U62 RS14830 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS14905 2 2 Adenine phosphoribosyltransferase

Bacillus 1-day B4U62 RS15030 1 1 Quinolinate synthase NadA

Bacillus 1-day B4U62 RS15150 1 1 Valine–tRNA ligase

Bacillus 1-day B4U62 RS15605 1 1 Putative sporulation protein YtxC

Bacillus 1-day B4U62 RS15715 1 1 Pyruvate kinase

Bacillus 1-day B4U62 RS15720 1 1 ATP-dependent 6-phosphofructokinase

Bacillus 1-day B4U62 RS15770 2 2 CBS domain-containing protein

Bacillus 1-day B4U62 RS15990 1 1 Acetate–CoA ligase

Bacillus 1-day B4U62 RS16050 1 1 DNA translocase SftA

Bacillus 1-day B4U62 RS16120 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS16215 1 1 Extracellular solute-binding protein

Bacillus 1-day B4U62 RS16880 1 1 Bifunctional aldolase/short-chain dehydrogenase

Bacillus 1-day B4U62 RS16995 1 1 Lrp/AsnC family transcriptional regulator

Bacillus 1-day B4U62 RS17250 1 1 PucR family transcriptional regulator

Bacillus 1-day B4U62 RS17290 1 1 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase
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Bacillus 1-day B4U62 RS17510 1 1 Purine permease

Bacillus 1-day B4U62 RS17950 1 1 YvrJ family protein

Bacillus 1-day B4U62 RS18090 1 1 Cadmium-translocating P-type ATPase

Bacillus 1-day B4U62 RS18215 1 1 ATP-binding cassette domain-containing protein

Bacillus 1-day B4U62 RS18230 1 1 Sporulation-delaying protein SdpB

Bacillus 1-day B4U62 RS18305 1 2 2,3-bisphosphoglycerate phosphoglycerate mutase

Bacillus 1-day B4U62 RS18430 1 1 Sugar ABC transporter permease

Bacillus 1-day B4U62 RS18445 1 1 FadR family transcriptional regulator

Bacillus 1-day B4U62 RS18495 2 2 Pyruvyl transferase

Bacillus 1-day B4U62 RS18630 1 1 ATP-dependent Clp protease proteolytic subunit

Bacillus 1-day B4U62 RS18815 1 1 Imidazoleglycerol-phosphate dehydratase HisB

Bacillus 1-day B4U62 RS18945 1 1 Excinuclease ABC subunit UvrA

Bacillus 1-day B4U62 RS18975 1 1 Serine protease

Bacillus 1-day B4U62 RS19580 1 1 Hypothetical protein

Bacillus 1-day B4U62 RS19840 1 1 F0F1 ATP synthase subunit beta

Bacillus 1-day B4U62 RS20050 2 3 ABC transporter ATP-binding protein

Bacillus 1-day B4U62 RS20225 1 1 MarR family transcriptional regulator

Bacillus 1-day B4U62 RS20360 1 1 dTDP-4-dehydrorhamnose reductase

Bacillus 1-day B4U62 RS20790 1 1 MFS transporter

Bacillus 1-day B4U62 RS20905 1 1 YbhB/YbcL family Raf kinase inhibitor-like protein

Bacillus 1-day B4U62 RS20970 1 1 GntP family permease

Bacillus 1-day B4U62 RS21155 1 1 Histidine ammonia-lyase

Bacillus 1-day B4U62 RS21195 1 1 Sugar-binding transcriptional regulator

Bacillus 1-day B4U62 RS21335 1 1 MFS transporter

Bacillus 1-day B4U62 RS21795 1 1 DUF2232 domain-containing protein

Bacillus 1-day B4U62 RS22065 1 1 16S rRNA methyltransferase RsmG

Bacillus 1-day B4U62 RS22410 1 1 Replicative DNA helicase

Bacillus 10-day B4U62 RS06875 1 1 ATP-dependent metallopeptidase FtsH/Yme1/Tma

Bacillus 10-day B4U62 RS09275 1 2 DNA mismatch repair endonuclease MutL

Bacillus 10-day B4U62 RS12480 1 1 LysM peptidoglycan-binding protein
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Bacillus 10-day B4U62 RS13565 1 2 YitT family protein

Bacillus 10-day B4U62 RS14390 1 2 Cation transporter

Bacillus 10-day B4U62 RS15625 1 1 Transcriptional regulator NrdR

Bacillus 100-day B4U62 RS08860 1 1 Flagellar basal body M-ring protein FliF

Deinococcus 1-day DR 0403 1 2 Inosine-uridine preferring nucleoside hydrolase

Deinococcus 1-day DR 0544 1 1 Hypothetical protein

Deinococcus 1-day DR 0958 1 2 Peptide ABC transporter permease

Deinococcus 1-day DR 0986 1 1 Extracellular solute-binding protein

Deinococcus 1-day DR 1670 1 2 Cysteinyl-tRNA synthetase

Deinococcus 1-day DR 2024 1 1 Hypothetical protein

Deinococcus 1-day DR 2033 1 3 Glutamine synthase

Deinococcus 1-day DR 2168 1 2 16S rRNA m5C967 methyltransferase

Deinococcus 1-day DR 2286 1 1 Hypothetical protein

Deinococcus 1-day DR A0283 1 2 Serine protease

Deinococcus 10-day DR 0008 1 1 Hypothetical protein

Deinococcus 10-day DR 0167 1 1 Hypothetical protein

Deinococcus 10-day DR 0198 1 1 Recombination protein RecR

Deinococcus 10-day DR 0349 1 1 ATP-dependent protease LA

Deinococcus 10-day DR 0613 1 1 Hypothetical protein

Deinococcus 10-day DR 0698 1 1 v-type ATP synthase subunit C

Deinococcus 10-day DR 0877 1 1 Hypothetical protein

Deinococcus 10-day DR 0878 4 4 Adenine phosphoribosyltransferase

Deinococcus 10-day DR 0879 2 2 Hypothetical protein

Deinococcus 10-day DR 0907 1 1 CSD family cold shock protein

Deinococcus 10-day DR 0912 3 3 DNA-directed RNA polymerase subunit beta

Deinococcus 10-day DR 0932 1 1 Polyprenyl synthase

Deinococcus 10-day DR 1089 1 1 Recombination protein F

Deinococcus 10-day DR 1229 1 1 Hypothetical protein

Deinococcus 10-day DR 1237 1 1 Hypothetical protein

Deinococcus 10-day DR 1352 1 1 Dihydrolipoamide acetyltransferase-like protein
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Deinococcus 10-day DR 1501 1 1 NADH dehydrogenase I subunit E

Deinococcus 10-day DR 1514 1 1 2-phosphoglycerate kinase

Deinococcus 10-day DR 1567 1 1 Peptide ABC transporter ATP-binding protein

Deinococcus 10-day DR 1568 1 1 Peptide ABC transporter ATP-binding protein

Deinococcus 10-day DR 1597 1 1 Glucose 6-phosphate dehydrogenase assembly protein OpcA

Deinococcus 10-day DR 1705 1 1 Hydrolase family protein

Deinococcus 10-day DR 1707 1 1 DNA-directed DNA polymerase

Deinococcus 10-day DR 1976 1 1 DNA mismatch repair protein MutS

Deinococcus 10-day DR 2059 1 1 Glycyl-tRNA synthetase

Deinococcus 10-day DR 2134 1 1 ABC transporter ATP-binding protein

Deinococcus 10-day DR 2224 1 1 Tellurium resistance protein TerZ

Deinococcus 10-day DR 2234 1 1 Hypothetical protein

Deinococcus 10-day DR 2248 1 1 Dipeptidyl peptidase IV-like protein

Deinococcus 10-day DR 2370 1 1 Dihydrolipoamide dehydrogenase E3 component

Deinococcus 10-day DR 2583 1 1 Malate dehydrogenase

Deinococcus 10-day DR B0051 2 2 Hypothetical protein

Deinococcus 10-day DR B0052 1 1 Hypothetical protein

Deinococcus 10-day DR C0007 1 1 Hypothetical protein

Deinococcus 10-day DR C0008 1 1 Hypothetical protein

Deinococcus 10-day DR r09 1 1 23S ribosomal RNA

Deinococcus 100-day DR 1301 1 1 Hypothetical protein

Deinococcus 100-day DR A0073 1 1 Cation-transporting P-type ATPase

Caulobacter 1-day CCNA 00028 4 6 TonB-dependent receptor

Caulobacter 1-day CCNA 00099 1 1 FtsZ-binding protein FzlC

Caulobacter 1-day CCNA 01011 1 1 Imidazolonepropionase

Caulobacter 1-day CCNA 01393 1 2 Soluble lytic murein transglycosylase

Caulobacter 1-day CCNA 01556 1 1 LacI-family transcriptional regulator

Caulobacter 1-day CCNA 01816 1 1 Nitrogen regulation protein ntrY

Caulobacter 1-day CCNA 03177 1 1 Methylmalonyl-CoA mutase MeaA-like protein

Caulobacter 1-day CCNA 03879 1 1 Uroporphyrinogen decarboxylase
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Caulobacter 10-day CCNA 00083 1 1 Phosphoglucomutase/phosphomannomutase

Caulobacter 10-day CCNA 00313 1 1 Peptidase, M14 family

Caulobacter 10-day CCNA 00798 1 1 ABC transporter, ATP-binding protein cydC

Caulobacter 10-day CCNA 00851 1 2 Periplasmic multidrug efflux lipoprotein precursor

Caulobacter 10-day CCNA 01395 1 1 Flavoprotein-ubiquinone oxidoreductase FzeA

Caulobacter 10-day CCNA 02039 2 2 ATP-binding subunit ClpX

Caulobacter 10-day CCNA 02157 1 1 HipB-family transcriptional regulator

Caulobacter 10-day CCNA 03878 1 5 Ferrochelatase

Caulobacter 100-day CCNA 02867 1 1 Phage tail length tape measure-related protein

Caulobacter 100-day CCNA 03123 2 5 ArsR-family transcriptional regulator

Caulobacter 100-day CCNA 03125 2 3 Melibiose carrier protein

Caulobacter 100-day CCNA 03243 1 1 NADP+-dependent dehydrogenase

Janthinobacterium 100-day FFI39 RS05855 1 1 Cell division protein ZapD

Janthinobacterium 100-day FFI39 RS10710 1 1 Flagellar transcriptional regulator FlhC

Janthinobacterium 100-day FFI39 RS13510 1 1 Efflux RND transporter

Janthinobacterium 100-day FFI39 RS18515 1 3 Response regulator transcription factor

Pedobacter 1-day FFJ24 RS00155 1 1 SDR family NAD(P)-dependent oxidoreductase

Pedobacter 1-day FFJ24 RS00415 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS00495 2 2 TonB-dependent siderophore receptor

Pedobacter 1-day FFJ24 RS00550 1 1 LptF/LptG family permease

Pedobacter 1-day FFJ24 RS00930 1 1 Family 43 glycosylhydrolase

Pedobacter 1-day FFJ24 RS00995 1 1 Endo-1,4-beta-xylanase

Pedobacter 1-day FFJ24 RS01675 1 1 Glycoside hydrolase

Pedobacter 1-day FFJ24 RS02155 1 1 GntR family transcriptional regulator

Pedobacter 1-day FFJ24 RS02245 1 1 DNA repair protein RadC

Pedobacter 1-day FFJ24 RS02305 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS02465 1 1 DNA-directed RNA polymerase subunit beta

Pedobacter 1-day FFJ24 RS02835 1 1 DUF695 domain-containing protein

Pedobacter 1-day FFJ24 RS03050 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS03145 1 1 Imidazole glycerol phosphate synthase subunit HisF

14



Pedobacter 1-day FFJ24 RS03420 1 1 SusC/RagA family TonB-linked outer membrane protein

Pedobacter 1-day FFJ24 RS03975 1 1 Aspartate aminotransferase family protein

Pedobacter 1-day FFJ24 RS04035 1 1 Glycosyltransferase

Pedobacter 1-day FFJ24 RS04060 1 1 Response regulator

Pedobacter 1-day FFJ24 RS04100 1 1 FtsX-like permease family protein

Pedobacter 1-day FFJ24 RS04310 1 1 Glycosyltransferase family 9 protein

Pedobacter 1-day FFJ24 RS05090 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS05445 1 1 Ferritin

Pedobacter 1-day FFJ24 RS05455 3 4 Hypothetical protein

Pedobacter 1-day FFJ24 RS05480 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS05605 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS06370 1 1 Metallophosphoesterase

Pedobacter 1-day FFJ24 RS06605 1 1 Glycoside hydrolase family 92 protein

Pedobacter 1-day FFJ24 RS07700 1 1 Bcr/CflA family efflux MFS transporter

Pedobacter 1-day FFJ24 RS07770 1 1 Hydrolase

Pedobacter 1-day FFJ24 RS08480 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS08640 1 1 Glutamate synthase large subunit

Pedobacter 1-day FFJ24 RS08735 1 1 Substrate-binding domain-containing protein

Pedobacter 1-day FFJ24 RS08820 1 1 Replicative DNA helicase

Pedobacter 1-day FFJ24 RS08870 1 1 S8 family serine peptidase

Pedobacter 1-day FFJ24 RS08915 1 2 Glucose-6-phosphate dehydrogenase

Pedobacter 1-day FFJ24 RS09040 3 3 TonB-dependent receptor

Pedobacter 1-day FFJ24 RS09195 1 1 DUF4959 domain-containing protein

Pedobacter 1-day FFJ24 RS09365 1 1 Phosphate acetyltransferase

Pedobacter 1-day FFJ24 RS09730 1 1 Glycosyltransferase

Pedobacter 1-day FFJ24 RS10145 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS11945 1 1 Efflux RND transporter permease subunit

Pedobacter 1-day FFJ24 RS12005 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS12035 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS12235 2 2 DNA polymerase IV
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Pedobacter 1-day FFJ24 RS12250 1 1 Crp/Fnr family transcriptional regulator

Pedobacter 1-day FFJ24 RS12770 1 1 SusC/RagA family TonB-linked protein

Pedobacter 1-day FFJ24 RS12900 1 1 Anthranilate phosphoribosyltransferase

Pedobacter 1-day FFJ24 RS14800 1 1 Tetratricopeptide repeat protein

Pedobacter 1-day FFJ24 RS14945 1 1 Biopolymer transporter ExbD

Pedobacter 1-day FFJ24 RS15010 1 1 DUF808 family protein

Pedobacter 1-day FFJ24 RS15120 1 1 T9SS type B sorting protein

Pedobacter 1-day FFJ24 RS15465 1 1 Alpha/beta fold hydrolase

Pedobacter 1-day FFJ24 RS15515 1 1 Amino acid permease

Pedobacter 1-day FFJ24 RS15765 1 1 TonB-dependent receptor

Pedobacter 1-day FFJ24 RS16325 1 1 Response regulator

Pedobacter 1-day FFJ24 RS16620 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS17420 1 1 DNA-directed RNA polymerase subunit alpha

Pedobacter 1-day FFJ24 RS17480 1 1 50S ribosomal protein L6

Pedobacter 1-day FFJ24 RS17705 1 1 Sensor histidine kinase

Pedobacter 1-day FFJ24 RS18050 1 1 TraR/DksA family transcriptional regulator

Pedobacter 1-day FFJ24 RS18195 1 1 N-acetylglucosamine kinase

Pedobacter 1-day FFJ24 RS18645 1 1 Cupin-like domain-containing protein

Pedobacter 1-day FFJ24 RS18690 1 1 Metallophosphoesterase

Pedobacter 1-day FFJ24 RS19145 1 1 Type IX secretion system PorV

Pedobacter 1-day FFJ24 RS19365 1 1 UMP kinase

Pedobacter 1-day FFJ24 RS19400 1 1 Outer membrane beta-barrel protein

Pedobacter 1-day FFJ24 RS19550 1 1 23S rRNA pseudouridine(2604) synthase RluF

Pedobacter 1-day FFJ24 RS19635 1 1 PAS domain S-box protein

Pedobacter 1-day FFJ24 RS19660 2 2 Undecaprenyl-phosphate glucose phosphotransferase

Pedobacter 1-day FFJ24 RS20015 1 1 DUF3109 family protein

Pedobacter 1-day FFJ24 RS20170 1 1 Oligosaccharide flippase family protein

Pedobacter 1-day FFJ24 RS20285 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS20380 1 1 Superoxide dismutase

Pedobacter 1-day FFJ24 RS21080 1 1 SusC/RagA family TonB-linked protein

16



Pedobacter 1-day FFJ24 RS21100 1 1 SusD/RagB family nutrient-binding lipoprotein

Pedobacter 1-day FFJ24 RS21105 3 3 SusC/RagA family TonB-linked protein

Pedobacter 1-day FFJ24 RS21215 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS21495 1 1 AAA family ATPase

Pedobacter 1-day FFJ24 RS22585 1 1 GHKL domain-containing protein

Pedobacter 1-day FFJ24 RS22905 1 1 Type VI secretion system protein Hcp

Pedobacter 1-day FFJ24 RS22945 2 2 Histidine ammonia-lyase

Pedobacter 1-day FFJ24 RS23285 1 1 HAD-IB family phosphatase

Pedobacter 1-day FFJ24 RS23720 1 1 TonB family protein

Pedobacter 1-day FFJ24 RS24340 1 1 Lauroyl acyltransferase

Pedobacter 1-day FFJ24 RS24430 1 1 Fumarate hydratase

Pedobacter 1-day FFJ24 RS25035 1 1 TonB-dependent receptor

Pedobacter 1-day FFJ24 RS25180 1 1 Hypothetical protein

Pedobacter 1-day FFJ24 RS25285 1 1 DUF2723 domain-containing protein

Pedobacter 10-day FFJ24 RS02470 1 1 DNA-directed RNA polymerase subunit beta

Pedobacter 10-day FFJ24 RS07475 1 1 PAS domain S-box protein

Pedobacter 10-day FFJ24 RS12525 1 1 SusC/RagA family TonB-linked protein

Pedobacter 10-day FFJ24 RS14495 1 1 RluA family pseudouridine synthase

Pedobacter 10-day FFJ24 RS14735 1 1 RelA/SpoT family protein

Pedobacter 10-day FFJ24 RS17085 1 1 Acetate–CoA ligase

Pedobacter 10-day FFJ24 RS18905 1 1 WYL domain-containing protein

Pedobacter 10-day FFJ24 RS25295 1 1 Ribose-phosphate pyrophosphokinase

Pseudomonas 1-day FFI16 RS00020 1 1 Hypothetical protein

Pseudomonas 1-day FFI16 RS00110 1 1 Penicillin-binding protein

Pseudomonas 1-day FFI16 RS00275 1 1 Response regulator

Pseudomonas 1-day FFI16 RS01100 1 1 Ketol-acid reductoisomerase

Pseudomonas 1-day FFI16 RS01890 1 1 Protein translocase subunit SecD

Pseudomonas 1-day FFI16 RS02020 1 1 2-isopropylmalate synthase

Pseudomonas 1-day FFI16 RS03235 1 1 Methyltransferase domain-containing protein

Pseudomonas 1-day FFI16 RS04725 1 1 2-methylaconitate cis-trans isomerase PrpF

17



Pseudomonas 1-day FFI16 RS05035 1 1 Nitrate reduction transcription regulator Fnr

Pseudomonas 1-day FFI16 RS05325 1 1 Mechanosensitive ion channel

Pseudomonas 1-day FFI16 RS06520 1 1 RraA family protein

Pseudomonas 1-day FFI16 RS07235 1 1 Ribokinase

Pseudomonas 1-day FFI16 RS08175 1 1 Fimbria/pilus outer membrane usher protein

Pseudomonas 1-day FFI16 RS08470 1 1 FtsX-like permease family protein

Pseudomonas 1-day FFI16 RS09450 1 1 ABC transporter permease

Pseudomonas 1-day FFI16 RS09640 1 2 Hemagglutinin N-terminal domain-containing protein

Pseudomonas 1-day FFI16 RS10080 1 1 Nuclear transport factor 2 family protein

Pseudomonas 1-day FFI16 RS11460 1 1 C-type cytochrome

Pseudomonas 1-day FFI16 RS12840 1 1 Ribonucleotide-diphosphate reductase subunit beta

Pseudomonas 1-day FFI16 RS13190 1 1 Hypothetical protein

Pseudomonas 1-day FFI16 RS14060 1 1 Precorrin-4 C(11)-methyltransferase

Pseudomonas 1-day FFI16 RS15085 1 1 Zinc-binding dehydrogenase

Pseudomonas 1-day FFI16 RS15585 1 1 UvrY/SirA/GacA family transcription factor

Pseudomonas 1-day FFI16 RS15740 1 1 PAS domain S-box protein

Pseudomonas 1-day FFI16 RS16780 1 1 Dipeptidase

Pseudomonas 1-day FFI16 RS17515 1 1 DEAD/DEAH box helicase

Pseudomonas 1-day FFI16 RS18145 1 1 Phage tail protein

Pseudomonas 1-day FFI16 RS19225 1 1 L-threonine dehydrogenase

Pseudomonas 1-day FFI16 RS19430 1 1 4-carboxymuconolactone decarboxylase

Pseudomonas 1-day FFI16 RS20030 1 1 Methyltransferase domain-containing protein

Pseudomonas 1-day FFI16 RS22765 1 1 Ferrochelatase

Pseudomonas 1-day FFI16 RS23125 1 1 Gluconate transporter

Pseudomonas 1-day FFI16 RS23555 1 1 Methyl-accepting chemotaxis protein

Pseudomonas 1-day FFI16 RS24090 1 2 DNA mismatch repair endonuclease MutL

Pseudomonas 1-day FFI16 RS24375 2 2 Bifunctional adenylyltransferase

Pseudomonas 1-day FFI16 RS26360 1 1 Catalase HPII

Pseudomonas 1-day FFI16 RS27220 1 2 Phosphate signaling complex protein PhoU

Pseudomonas 1-day FFI16 RS27470 1 2 tonB-system energizer ExbB

18



Pseudomonas 1-day FFI16 RS27910 1 2 Exopolyphosphatase

Pseudomonas 1-day FFI16 RS27965 1 1 Transcription termination factor Rho

Pseudomonas 1-day FFI16 RS29190 1 1 3-keto-5-aminohexanoate cleavage protein

Pseudomonas 1-day FFI16 RS29735 1 1 Autotransporter domain-containing protein

Pseudomonas 1-day FFI16 RS29785 1 1 SDR family NAD(P)-dependent oxidoreductase

Pseudomonas 10-day FFI16 RS27875 1 2 C-type cytochrome

Table S2: The number of fixed nonsynonymous mutations and number

of nonsynonymous mutations that reached a frequency of at least 0.8

within each gene for all taxa and treatments. Only genes with at least

one fixed mutation are included.
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Genus Treatment intersection Size P
Bacillus 1 ∩ 10 34 < 10−3

1 ∩ 100 37 < 10−3

10 ∩ 100 42 < 10−3

1 ∩ 10 ∩ 100 31 < 10−3

Caulobacter 1 ∩ 10 134 < 10−3

1 ∩ 100 145 < 10−3

10 ∩ 100 173 < 10−3

1 ∩ 10 ∩ 100 112 < 10−3

Deinococcus 1 ∩ 10 62 < 10−3

1 ∩ 100 63 < 10−3

10 ∩ 100 61 < 10−3

1 ∩ 10 ∩ 100 47 < 10−3

Pedobacter 1 ∩ 10 26 < 10−3

1 ∩ 100 18 < 10−3

10 ∩ 100 21 < 10−3

1 ∩ 10 ∩ 100 16 < 10−3

Janthinobacterium 1 ∩ 100 72 < 10−3

Pseudomonas 1 ∩ 10 76 < 10−3

1 ∩ 100 136 < 10−3

10 ∩ 100 135 < 10−3

1 ∩ 10 ∩ 100 70 < 10−3

Table S3: The number of genes that were enriched for a given treatment in-
tersection. P -values correspond to tests of whether a given intersection size is
greater than expected by chance.
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Figure S1: Allele frequency trajectories of all Bacillus subtilis replicate popula-
tions.
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Figure S2: Allele frequency trajectories of all Caulobacter crescentus replicate
populations.
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Figure S3: Allele frequency trajectories of all Deinococcus radiodurans replicate
populations.
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Figure S4: Allele frequency trajectories of all Janthinobacterium sp. KBS0711
replicate populations. Three 10-day replicate populations repeatedly went ex-
tinct over the course of the experiment, limiting the number of timepoints and
preventing us from inferring mutation trajectories.
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Figure S5: Allele frequency trajectories of all Pedobacter sp. KBS0701 replicate
populations. Three 100-day replicate populations repeatedly went extinct over
the course of the experiment, limiting the number of timepoints and preventing
us from inferring mutation trajectories.
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Figure S6: Allele frequency trajectories of all Pseudomonas sp. KBS0710 repli-
cate populations. Two 100-day replicate populations repeatedly went extinct
over the course of the experiment, limiting the number of timepoints and pre-
venting us from inferring mutation trajectories.
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Figure S7: Molecular evolutionary dynamics of Bacillus subtilis. a-c) Cumu-
lative mutation (M(t)) trajectories for both strains over time. The dashed
black line is the mean. d-f) The change in M(t) between timepoints across
treatments. g-i) The cumulative number of fixed mutations over time for all
populations within a given treatment. j-l) The median mutation frequency
over time. m-o) The total number of polymorphic mutations segregating in the
population over time.
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Figure S8: Molecular evolutionary dynamics of Caulobacter crescentus. a-c)
Cumulative mutation (M(t)) trajectories for both strains over time. The dashed
black line is the mean. d-f) The change in M(t) between timepoints across
treatments. g-i) The cumulative number of fixed mutations over time for all
populations within a given treatment. j-l) The median mutation frequency
over time. m-o) The total number of polymorphic mutations segregating in the
population over time.
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Figure S9: Molecular evolutionary dynamics of Deinococcus radiodurans. a-
c) Cumulative mutation (M(t)) trajectories for both strains over time. The
dashed black line is the mean. d-f) The change in M(t) between timepoints
across treatments. g-i) The cumulative number of fixed mutations over time for
all populations within a given treatment. j-l) The median mutation frequency
over time. m-o) The total number of polymorphic mutations segregating in the
population over time.
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Figure S10: Molecular evolutionary dynamics of Janthinobacterium sp.
KBS0711. a-c) Cumulative mutation (M(t)) trajectories for both strains over
time. The dashed black line is the mean. d-f) The change in M(t) between
timepoints across treatments. g-i) The cumulative number of fixed mutations
over time for all populations within a given treatment. j-l) The median mu-
tation frequency over time. m-o) The total number of polymorphic mutations
segregating in the population over time.
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Figure S11: Molecular evolutionary dynamics of Pedobacterium sp. KBS0701.
a-c) Cumulative mutation (M(t)) trajectories for both strains over time. The
dashed black line is the mean. d-f) The change in M(t) between timepoints
across treatments. g-i) The cumulative number of fixed mutations over time for
all populations within a given treatment. j-l) The median mutation frequency
over time. m-o) The total number of polymorphic mutations segregating in the
population over time.
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Figure S12: Molecular evolutionary dynamics of Pseudomonas sp. KBS0710.
a-c) Cumulative mutation (M(t)) trajectories for both strains over time. The
dashed black line is the mean. d-f) The change in M(t) between timepoints
across treatments. g-i) The cumulative number of fixed mutations over time for
all populations within a given treatment. j-l) The median mutation frequency
over time. m-o) The total number of polymorphic mutations segregating in the
population over time.

32



4 3 2 1 0

2

1

0

1

2

a Bacillus

1-day
10-days
100-day

0 1 2 3 4
2

1

0

1

2

3

b Caulobacter

1 0 1 2

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50
c Deinococcus

2 1 0
3

2

1

0

1

2

3

4
d Pedobacter

2 0 2 4

4

2

0

2

4

6

8

e Janthinobacterium

1 0 1

1

0

1

2

3

4
f Pseudomonas

PC 1 (46.62%)

PC
 2

 (2
9.

29
%

)

Figure S13: a-f) A single PCA was performed on the observed mutation spec-
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Figure S14: a-f) a-f) The relationship between the maximum observed fre-
quency of a mutation (fmax) and the degree of parallelism. Genome-wide par-
allelism is generally higher among mutations that reach a higher maximum
frequency during their sojourn time in the population. Dots and bars represent
the mean and 95% CIs from 10,000 subsamples of mutations with a given fmax

cutoff, respectively.
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Figure S15: Parallelism and divergence/convergence visualizations for all muta-
tions in Bacillus. a) The survival curve for multiplicity decays at a slower rate
than the null across treatments, indicating that we can reject the null hypothe-
sis that nonsynonymous mutations are equally distributed across genes. Dashed
lines represent the empirical survival curves and dotted lines represent the null
survival curves. The color scheme in a is used for all sub-plots. b) A scatterplot
visualizing the relationship between the mean maximum frequency (fmax) and
multiplicity of genes. c) A venn diagram showing the overlap in genes that
were significantly enriched for nonsynonymous mutations across treatments. d-
f) Pairwise comparisons of multiplicity for genes across all treatments, where
significantly enriched genes have a black outline.
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Figure S16: Parallelism and divergence/convergence analyses for all mutations
in Caulobacter. a) The survival curve for multiplicity decays at a slower rate
than the null across treatments, indicating that we can reject the null hypothesis
that nonsynonymous mutations are equally distributed across genes. Dashed
lines represent the empirical survival curves and dotted lines represent the null
survival curves. The color scheme in a is used for all sub-plots. b) A scatterplot
visualizing the relationship between the mean maximum frequency (fmax) and
multiplicity of genes. c) A venn diagram showing the overlap in genes that
were significantly enriched for nonsynonymous mutations across treatments. d-
f) Pairwise comparisons of multiplicity for genes across all treatments, where
significantly enriched genes have a black outline.
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Figure S17: Parallelism and divergence/convergence analyses for all mutations
in Deinococcus. a) The survival curve for multiplicity decays at a slower rate
than the null across treatments, indicating that we can reject the null hypothesis
that nonsynonymous mutations are equally distributed across genes. Dashed
lines represent the empirical survival curves and dotted lines represent the null
survival curves. The color scheme in a is used for all sub-plots. b) A scatterplot
visualizing the relationship between the mean maximum frequency (fmax) and
multiplicity of genes. c) A venn diagram showing the overlap in genes that
were significantly enriched for nonsynonymous mutations across treatments. d-
f) Pairwise comparisons of multiplicity for genes across all treatments, where
significantly enriched genes have a black outline.
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Figure S18: Parallelism and divergence/convergence analyses for all mutations
in Janthinobacterium. a) The survival curve for multiplicity decays at a slower
rate than the null across treatments, indicating that we can reject the null hy-
pothesis that nonsynonymous mutations are equally distributed across genes.
Dashed lines represent the empirical survival curves and dotted lines repre-
sent the null survival curves. The color scheme in a is used for all sub-plots.
b) A scatterplot visualizing the relationship between the mean maximum fre-
quency (fmax) and multiplicity of genes. c) A venn diagram showing the overlap
in genes that were significantly enriched for nonsynonymous mutations across
treatments. d-f) Pairwise comparisons of multiplicity for genes across all treat-
ments, where significantly enriched genes have a black outline.
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Figure S19: Parallelism and divergence/convergence analyses for all mutations
in Pedobacter. a) The survival curve for multiplicity decays at a slower rate than
the null across treatments, indicating that we can reject the null hypothesis
that nonsynonymous mutations are equally distributed across genes. Dashed
lines represent the empirical survival curves and dotted lines represent the null
survival curves. The color scheme in a is used for all sub-plots. b) A scatterplot
visualizing the relationship between the mean maximum frequency (fmax) and
multiplicity of genes. c) A venn diagram showing the overlap in genes that
were significantly enriched for nonsynonymous mutations across treatments. d-
f) Pairwise comparisons of multiplicity for genes across all treatments, where
significantly enriched genes have a black outline.
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Figure S20: Parallelism and divergence/convergence analyses for all mutations
in Pseudomonas. a) The survival curve for multiplicity decays at a slower rate
than the null across treatments, indicating that we can reject the null hypothesis
that nonsynonymous mutations are equally distributed across genes. Dashed
lines represent the empirical survival curves and dotted lines represent the null
survival curves. The color scheme in a is used for all sub-plots. b) A scatterplot
visualizing the relationship between the mean maximum frequency (fmax) and
multiplicity of genes. c) A venn diagram showing the overlap in genes that
were significantly enriched for nonsynonymous mutations across treatments. d-
f) Pairwise comparisons of multiplicity for genes across all treatments, where
significantly enriched genes have a black outline.
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Figure S21: Visualization of all genes with an excess of non-synonymous mu-
tations in more than one treatment for Bacillus. If a gene acquired more than
three mutations (nmin ≥ 3) we tested whether it acquired more mutations
than expected by chance. If the P -value of a given gene was less than the
FDR-corrected P -values (P < P ∗) it was significantly enriched for mutations,
otherwise it was not significantly enriched (PP ∗).
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Figure S22: Visualization of all genes with an excess of non-synonymous mu-
tations in more than one treatment for Caulobacter. If a gene acquired more
than three mutations (nmin ≥ 3) we tested whether it acquired more muta-
tions than expected by chance. If the P -value of a given gene was less than the
FDR-corrected P -values (P < P ∗) it was significantly enriched for mutations,
otherwise it was not significantly enriched (PP ∗).
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Figure S23: Visualization of all genes with an excess of non-synonymous mu-
tations in more than one treatment for Deinococcus. If a gene acquired more
than three mutations (nmin ≥ 3) we tested whether it acquired more muta-
tions than expected by chance. If the P -value of a given gene was less than the
FDR-corrected P -values (P < P ∗) it was significantly enriched for mutations,
otherwise it was not significantly enriched (PP ∗).
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Figure S24: Visualization of all genes with an excess of non-synonymous mu-
tations in more than one treatment for Pedobacter. If a gene acquired more
than three mutations (nmin ≥ 3) we tested whether it acquired more muta-
tions than expected by chance. If the P -value of a given gene was less than the
FDR-corrected P -values (P < P ∗) it was significantly enriched for mutations,
otherwise it was not significantly enriched (PP ∗).
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Figure S25: Visualization of all genes with an excess of non-synonymous mu-
tations in more than one treatment for Pseudomonas. If a gene acquired more
than three mutations (nmin ≥ 3) we tested whether it acquired more muta-
tions than expected by chance. If the P -value of a given gene was less than the
FDR-corrected P -values (P < P ∗) it was significantly enriched for mutations,
otherwise it was not significantly enriched (PP ∗).
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