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Supporting Information Text15

Survival Analysis. We used the Weibull distribution to model survival curves. We assume that death events occur more16

frequently than birth events at any given time (i.e., d(t) >> b(t)) such that we can describe the system using equations that do17

not increase at any point in time (i.e., a monotonically decreasing function). The Weibull distribution is a two-parameter18

continuous distribution that is often used to model systems where the failure rate changes over time (1).19

We start with the form of the Weibull that describes the number of cells at time t (N (t)):20

N (t) = N(0) ∗ exp
{
−(t · d0)k

}
[1]21

where d0 is a scale parameter that describes the spread of the distribution, k is a shape parameter that describes how the22

failure rate of the system changes over time, and N(0) is the initial number of cells. If k < 1 the failure rate of the system23

decreases over time (i.e., death rate decreases), the opposite being the case if k > 1. If k = 1 the failure rate remains constant24

through time and population size decays exponentially. After dividing both sides by N(0), we are left with a result that relates25

to the survival function derived from the cumulative density function (F (t)) of the Weibull distribution:26

S(t) = P(T > t) =
∫ ∞

t

f(u)du = 1− F (t) [2]27

which describes the proportion of surviving individuals (S(t)) at time t as:28

S(t) = exp
{
−(d0 · t)k

}
[3]29

To fit the Weibull survival function to the data we used the log transformed form of the model:30

loge(S (t)) = −(d0 · t)k [4]31

The log-transformed form of the survival function was fit to the log-transformed proportion of surviving individuals using32

the Nelder-Mead method in the mle2 function from the bbmle v1.0.20 package in R (2). For each population, we fit the33

model using 90 combinations of initial parameter values and chose the optimal model based on Akaike information criterion.34

We used the same approach to fit the exponential survival function to the data and conducted a likelihood-ratio test.35

We also elected to compare the results of the Weibull, which models a system where the net rate of growth increases36

over time, to a bi-exponential model where the population is composed of two phenotypes that each exhibit different death37

rates. The rational behind this analysis is that microbial populations often exhibit phenotypic heterogeneity (3) and while we38

found no evidence of phenotypic heterogeneity from colony morphology in any replicate population across all taxa (excluding39

endospore-forming B. subtilis), it is still plausible that a mixture of two death rates could explain the curvature we observed.40

To test this hypothesis, we defined a simple model of exponential decay of two cellular types41

N (t) = N(0)
(
δe−d0,1t + (1− δ)e−d0,2t

)
[5]42

where d0,1 and d0,2 are the death rates of the two phenotypes and δ is the proportion of cells that belong to the first43

phenotype. Because the Weibull and the bi-exponential are not nested models, we examined the relative fit of the two models44

by calculating the difference of the corrected AIC estimators (4) (Fig. S4).45

Longevity.46

Estimating longevity. From the estimated Weibull parameters, we define the mean time to death of a cell, T̄d, as:47

T̄d = d−1
0 Γ(1 + 1/k) [6]48

To estimate the standard error of T̄d we used the delta method to estimate the variance of T̄d (5). Because T̄d was analyzed49

on a log10 scale, we performed the delta method on log10 transformed estimates of T̄d. We define the variance as:50

σ2
log10 T̄d

=

{(
∂ log10 T̄d

∂d0
∂ log10 T̄d

∂k

)T

∗ Σk,d0 ∗

(
∂ log10 T̄d

∂d0
∂ log10 T̄d

∂k

)}
[7]51

where Σk̂,d̂0
is the variance covariance matrix of d0 and k that was estimated using bbmle. The partial derivatives are:52

∂ log10 T̄d

∂d0
= log10(e)d0 [8a]

∂ log10 T̄d

∂k
= log10(e)(Γ (1 + 1/k))−1 Γ′ (1 + 1/k)−k−2

= −k−2 log10 (e) (Γ (1 + 1/k))−1Γ (1 + 1/k)ψ0 (1 + 1/k)
= −k−2 log10 (e) ψ0 (1 + 1/k)

[8b]
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where ∂ log10 T̄d/∂k was derived using the chain rule, ψ0 is the polygamma function of order zero, and e is Euler’s number.53

The pooled variance (σ2
p, log10 T̄d

) was calculated for each replicate within a given taxon using the following formula:54

σ2
p,log10 T̄d

=
∑k

i=1 (ni − 1)σ2
i,log10 T̄d∑k

i=1 (ni − 1)
[9]55

where σ2
p,log10 T̄d

represents the ith population. Standard errors were calculated as SEp,log10 T̄d
= σp,log10 T̄d

/
√
n , where n56

is the number of biological replicates within a given taxon.57

We used the Weibull parameters to estimate the time until population size can no longer be reliably estimated, making the58

population effectively extinct. We established the critical proportion of surviving individuals for each replicate population59

as Sext = N(text) /N(0), Here N(text) is the population size where on average we can sample only a single CFU given our60

experimental design and sampling regime, which is N(text) = 1 CFU * 50 mL * 1 mL/ 0.1 mL = 500 cells.61

Using Sext as the quantile of interest, time until extinction (Text) is calculated as:62

Text = d−1
0 (−loge(Sext)1/k) [10]63

The half-life of a cell (T1/2) can be calculated by setting Sext = 0.5. Using the Delta method again, we defined the variance64

as65

σ2
log10 Text

=

{(
∂ log10 Text

∂d0
∂ log10 Text

∂k

)T

∗ Σk,d0 ∗
(

∂ log10 Text

∂d0
∂ log10 Text

∂k

)}
[11]66

and calculated the partial derivatives as:67

∂ log10 Text

∂d0
= log10(e)d0 [12a]

∂ log10 Text

∂k
= − loge(loge(1/Sext))

loge(10)k2 = − log10(loge(1/Sext))
k2 [12b]

Pooled variances and standard errors were calculated as described above.68

Contextualizing our longevity estimates. Our estimates of Text provide insight into demographic quantities that can rarely be69

observed in natural bacterial populations. Recent analyses of bacterial lineages using phylogenetic methods found that estimates70

of Text were slightly longer than the time required for new lineages to form, ranging from 20-33 million years (6). The question71

then is how our estimates of Text obtained via survival analysis compare to those obtained via phylogenetic analyses. Directly72

comparing these two sets of estimates would likely be fraught, as Text is an extensive quantity, meaning that it depends on73

the number of individuals within a system. Simply stated, all else being equal, larger populations take longer to go extinct.74

Without knowing the number of individuals within the lineages used in phylogenetic analyses (6), it is inappropriate for us to75

compare estimates of Text. While we do not know how many individuals are in a phylogenetic lineage, we expect that there are76

more individuals in a typical lineage in nature than there are in a single replicate population in the lab. Assuming that the77

dynamics we observed recapitulate those in nature, we would expect that the estimates of Text from phylogenetic analyses78

would be larger than our own. We found this pattern to be the case: all of our estimates of Text are smaller than those reported79

from phylogenetic lineage analysis (6) by roughly five orders of magnitude, a result that is consistent with our intuition.80

Single-cell staining. To identify dead cells, we used the nucleic-acid stain SYTOX Green (ex/em 504/523 nm), which is81

impermeable to intact microbial membranes due to its positive charge. To identify all cells we used DAPI (4’,6-diamidino-2-82

phenylindole, ex/em 350/470), a membrane permeable dye that binds to DNA. Aliquots of 100µL were taken from ancestral83

cellular cultures at stationary phase and after 1,000 days. Thes aliquots were incubated in 1 mM of SYTOX Green for 1584

min at 37 °C and 18 µmol mL-1 DAPI for 15 min. The double-stained samples were filtered onto a 25 mm, 0.2 µm black85

polycarbonate filter (Marine Manufacturing, Clinton Township, MI) using vacuum filtration (< 30 kPa) and mounted onto a86

1.0 mm thick glass slide. Filters were fixed between the slide and a 0.15 mm thick glass coverslip with BacLight mounting87

oil to minimize background fluorescence. Differentially stained cells were counted using epifluorescence microscopy. We used88

a Zeiss Axioplan microscope with a mercury lamp equipped with a blue-light filter (BP365, FT395, LP397), a green-light89

filter (450-490, FT 510, LP520), and a custom filter that allowed us to view CTC while avoiding excitation and emission90

overlap with the other fluorochromes. This custom filter was a Chroma Technologies Acridine Orange/Di-8-ANEPPS filter91

(excitation 480/30x, BS 505DC, emission 620/60m). Cells from each slide were randomly surveyed by moving across the filter92

from left to right. A new image was collected in each new field of view. Images were collected with an IMI Tech IMC-3145FT93

digital camera. Ten images were randomly collected per slide with each filter set. We used the FIJI/Image J program to94

count the number of active, dormant, and dead cells from each image. This procedure was performed at days zero and 1,000.95

The difference in the proportion of dead cells was calculated as the proportion of dead cells at day 1,000 subtracted by the96

proportion of dead cells at day 0.97
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Construction of ∆spoIIE mutant . We introduced a mutation in spoIIE, which controls cell division during sporulation but also98

activates sigma F, a transcription factor required for spore development. Construction of the ∆spoIIE mutant was performed99

on B. subtilis KBS0812 using a modified form of a previously described SPP1 transduction protocol (7). SPP1 lysate was made100

using the donor strain B. subtilis 168 ∆spoIIE BKE00640 obtained from the Bacillus Genetic Stock Center. Inoculation was101

performed in LB with 10mM CaCl2 and 5µg/mL chloramphenicol. Transduction was validated by PCR using the primers102

DAS11: 5’ TAAGACACCGCCCTTTCACG 3’ and DAS12: 5’ AGCAGCCATCCGTTATCAGC 3’. The donor strain was used103

as a positive control and the recipient strain was used as a negative control. After two rounds of isolation streaking to remove104

phage, a transduced colony was grown in LB with 10mM CaCl2, 1µg/mL erythromycin, and 5µg/mL chloramphenicol. Loss105

of sporulation was tested by growing the recipient strain in Difco Sporulation Media and testing for heat resistance. The106

antibiotic resistance cassette was removed from the recipient strain using a previously described approach (8).107

Metabolomics. Untargeted metabolomics was performed using a previously described approach (9). The following aliquots108

were used to calibrate the mass spectrometer using the concentration standards in Table S2 (ng): 60, 40, 20, 15, 10, 5, 3,109

0. The detection limit of the amino acids is approximately detected concentration of the lowest non-zero AA mass used to110

calibrate the mass spectrometer (3 ng) and ranges from 682 uM to 3 mM depending on the particular amino acid (Table S3).111

Output from GC/MS was analyzed by converting the proprietary .D files supplied by the GC/MS instrument into mzXML files112

using the ProteoWizard msconvert tool (10). mzXML files were then assembled into 3 batches: Amino Acid Standards, LTDE113

Media Samples, and All Files; before compressing each batch into a zip file and uploading the zipped GC/MS data to the114

Workflow4Metabolomics Galaxy server (11). GC/MS peaks were then deconvoluted using metaMS.runGC v2.1 with default115

parameters (12). Identified peaks for unknown compounds along with their corresponding intensities and retention times were116

output in the resulting peaktable.tsv file. Unknowns were annotated by matching the associated mass spectra provided in117

the peakspectra.msp output with characterized metabolites in the GOLM Metabolome database using the ms analysis tool118

with no GC column-type or retention index selected (13). Finally, to confirm the presence and identity of annotated peaks, we119

additionally used the Quantitative Analysis tool from the instrument supplied, proprietary Mass Hunter (Aglient) software.120

Metabolite identities of associated mass spectra were annotated by querying the NIST11 database. Concentration standards121

are listed in Table S2.122

Targeted metabolomics was performed on Bacillus sp. KBS0812 cell-free supernatant using a previously described approach123

(9). Targeted metabolomics using selected ion monitoring was performed on each Bacillus sp. KBS0812 replicate population124

using three technical replicates. Blank measurements were subtracted from the measurements obtained for each sample.125

Phylogenetic reconstruction. PCR on the 16S rRNA gene of each strain was performed using 8F and 1492R primers and PCR126

reaction conditions previously described (14). PCR products were purified using the QIAGEN QIAquick PCR Purification127

Kit and Sanger sequenced at the Indiana Molecular Biology Institute (IMBI) at Indiana University Bloomington (IUB).128

Sequences were aligned using SILVA INcremental Aligner v1.2.11 (SINA) (15). Phylogenetic reconstruction was performed using129

of Randomized Axelerated Maximum Likelihood v8.2.11 (RAxML) (16). The phylogeny was inferred using the General Time130

Reversible (GTR) model of nucleotide substitution with gamma distributed rate variation. Bootstrap convergence criteria were131

set to autoMRE. Rapid bootstrap analysis and the search for the best-scoring ML tree was performed in a single program call.132

The 16S rRNA sequence of Prochlorococcus marinus subsp. marinus str. CCMP1375 (NCBI accession number NC_005042)133

was used as an outgroup.134

Modeling trait evolution. We modeled the evolution of d0 on a rooted ultrametric form of our 16S rRNA RAxML phylogeny.135

Phylogenetic comparisons were performed using the Phylogenetic Monte Carlo (pmc) package v1.0.3 (17). Pairwise model136

comparisons were performed for Brownian motion vs. Pagel’s lambda using 1,000 iterations. We removed Bacillus sp. KBS0812137

from our data for this analysis, as it represented an extreme observation with a phylum-specific trait that the remaining taxa138

do not have. All statistical analyses were performed in R v3.5.0 .139

Genome sequencing and assembly. We performed whole genome sequencing using two sequencing technologies to obtain140

contiguous reference genomes for each taxon. Purified DNA was prepared for sequencing using the Illumina TruSeq DNA141

sample prep kit with an insert size of 250 bp and sequenced on an Illumina HiSeq 2500 using 100 bp pair-end reads (Illumina,142

San Diego, CA) at the Center for Genomics and Bioinformatics (CGB) at Indiana University Bloomington (IUB) for the143

following strain designations: KBS0701, KBS0702, KBS0703, KBS0705, KBS0706, KBS0710, KBS0711, KBS0713, KBS0714,144

KBS0715, KBS0721, KBS0722, KBS0724, KBS0725, KBS0727, KBS0801, KBS0802. DNA libraries were constructed using the145

Nextera DNA Sample Preparation kit with an insert size 300 on the Illumina HiSeq 2500 using 300 bp pair-end reads (Illumina,146

San Diego, CA) at the Hubbard Center for Genome Studies, University of New Hampshire for the following strain designations:147

ATCC13985, ATCC43928, KBS0702, KBS0707, KBS0712, KBS0801, KBS0812. Raw FASTQ reads were processed by removing148

Illumina TruSeq adaptors, trimming the end of each read, and quality-filtering for an average Phred score of 30 using cutadapt149

v1.7.1 (18).150

DNA extraction for Nanopore sequencing was performed using a previously described method (19). Library preparation was151

performed using the Nanopore Ligation Sequencing Kit (SQK-LSK109) and the 1D native barcoding genomic DNA procedure152

using barcode kit EXP-NBD104 and library kit SQK-LSK109. MinION sequencing was performed using the manufacturer’s153

guidelines on R9.4.1 flow cells (FLO-MIN106) on a MinION 18.12.9 (Oxford Nanopore Technologies, Oxford, United154

Kingdom). Base-calling and de-barcoding was performed using Guppy v2.3.5 with configuration files dna_r9.4.1_450bps.cfg155

4 of 25William R. Shoemaker, Stuart E. Jones, Mario E. Muscarella, Megan G. Behringer, Brent K. Lehmkuhl, and Jay T. Lennon



and configuration.cfg. We kept reads longer than 1,000 bp with an average Phred quality score of at least 10 and cut the156

first 100 bp using NanoFilt v2.3.0 (20). Hybrid assemblies were generated using Unicycler v0.4.7 (21).157

Comparative genomics. Because our set of taxa is phylogenetically diverse, they have few orthologues, making it difficult to158

determine whether convergent evolution occurred at the gene level. Therefore, we mapped enriched genes to higher order159

functions, allowing us to make inferences about convergent evolution. The metabolic pathway composition was inferred using160

the Metabolic And Physiological potentiaL Evaluator (MAPLE v2.3.1; (22)). MAPLE was run using bi-directional best hit161

with NCBI BLAST on KEGG genes and modules version 20190318 using all prokaryotes in KEGG. MAPLE output files for162

the module pathways, signatures, and complexes were all filtered for query coverage values greater than 80% and merged into a163

single file for each taxon. Filtered MAPLE results for were merged into a single presence-absence matrix.164

Mutation calling. Genome-wide pairwise nucleotide diversity was estimated from mutations called as SNPs by breseq v0.32.0165

(23). We found no evidence of fixed mutations in any population. The few reasonable candidates that breseq classified as fixed166

had extremely low coverage (≤ 10), suggesting that they were unlikely to represent "true" fixations and were removed from167

downstream analyses.168

Because the ancestral population was grown from a single CFU for only ∼ 13 generations, the high number of detectable169

mutations and their frequencies cannot be explained by the presence of ancestral genetic variation. Rather, these frequencies170

are the result of de novo mutations and birth events that occurred over 1,000 days of energy-limitation. However, to be171

conservative we chose to only examine mutations that were observed within a single replicate. Estimates of genetic diversity172

was calculated for all SNPs across the genome, as we assumed that recombination is rare and most sites are effectively linked.173

Nucleotide diversity was calculated using the bi-allelic equivalent of the pair-wise formula:174

θ̂Π = nc

nc − 1
1
L

∑
i

2 ∗ pi (1− pi) [13]175

Where pi represents the frequency of the ith mutant and the term nc represents the number of chromosomes in the pooled176

library. Since we sequenced the population from a bulk DNA extract, we chose to use the final population size as nc. We177

calculated the sample size-corrected number of segregating sites (θ̂W ) and Tajima’s D (TD) as previously described (24). The178

ratio of non-synonymous to synonymous mutations (pN/pS), genome-wide likelihood ratios, and gene-specific multiplicity179

scores were calculated as previously described (25). We tested whether pN/pS was less than one in each taxon using a left-tailed180

one-sided t-test. Using mean allele frequencies (f̄) and assuming that mutant lineages grew as a binary tree, we estimated the181

number of generations (tm) as
⌊
log2(f̄ ·N(tfinal))

⌋
and the number of cell divisions as

∑tm

i=1 2i for all replicate populations182

where we could call mutations. Linear mixed models were fit using statsmodels 0.11.1 (26).183

Index of replication (iRep) values were estimated in Python using the iRep package v1.1.14 (27). The iRep code was184

run on Sequence Alignment Map (SAM) files that were mapped using BWA-MEM v0.7.12 and converted to SAM format using185

SAMtools v1.9 (28).186
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Taxon ID Phylum Class Order Family Genus
ATCC13985 Proteobacteria γ-proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
ATCC43928 Proteobacteria γ-proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
KBS0701 Bacteroidetes Sphingobacteriia Sphingobacteriales Sphingobacteriaceae Pedobacter
KBS0702 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter
KBS0703 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter
KBS0705 Proteobacteria α-proteobacteria Rhodospirillales Rhodospirillaceae Inquilinus
KBS0706 Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium
KBS0707 Proteobacteria γ-proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
KBS0710 Proteobacteria γ-proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
KBS0711 Proteobacteria β-proteobacteria Burkholderiales Oxalobacteraceae Janthinobacterium
KBS0712 Proteobacteria β-proteobacteria Burkholderiales Variovorax Variovorax
KBS0713 Proteobacteria γ-proteobacteria Enterobacterales Yersiniaceae Yersinia
KBS0714 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Micrococcus
KBS0715 Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae Curtobacterium
KBS0721 Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium
KBS0722 Actinobacteria Actinobacteria Actinomycetales Cellulomonadaceae Oerskovia
KBS0724 Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Rhodococcus
KBS0725 Proteobacteria α-proteobacteria Rhizobiales Bradyrhizobiaceae Bradyrhizobium
KBS0801 Proteobacteria β-proteobacteria Burkholderiales Burkholderiaceae Burkholderia
KBS0802 Proteobacteria γ-proteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas
KBS0812 Firmicutes Bacilli Bacillales Bacillaceae Bacillus

Table S1. The taxonomic hierarchy of all taxa examined.
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Amino acid g/mol µmol/L
Cystine 240.1 1.25
Tyrosine 181.2 2.5
Histidine 155.2 2.5
Lysine 146.2 2.5
Arginine 174.2 2.5
Glutamic acid 147.1 2.5
Aspartic acid 133.1 2.5
Phenylalanine 165.2 2.5
Threonine 119.1 2.5
Serine 105.1 2.5
Methionine 149.2 2.5
Proline 115.1 2.5
Isoleucine 113.2 2.5
Leucine 113.2 2.5
Valine 117.2 2.5
Glycine 75.07 2.5
Alanine 89.09 2.5

Table S2. Mass and concentration of undiluted amino acid standards.
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Amino acid Min. detectable conc. (µM)
Cystine 2,384.0
Tyrosine 2,126.0
Histidine 3,019.0
Lysine 2,316.0
Arginine 3,427.0
Glutamic acid 1,726.0
Aspartic acid 1,471.0
Phenylalanine 1,519.0
Threonine 1,292.0
Serine 903.5
Methionine 1,727.0
Proline 1,138.0
Isoleucine 922.9
Leucine 940.1
Valine 965.0
Glycine 682.2
Alanine 792.4

Table S3. Concentration of the smallest standard amino acid dilution in µM.
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Fig. S1. The survival curve of each replicate population across taxa.
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Fig. S2. The survival curve of each replicate population across taxa.
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Fig. S3. The survival curve of each replicate population across taxa.
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Fig. S4. The difference in corrected AIC scores for the Weibull and bi-exponential models. A negative difference indicates that the Weibull has a better fit.
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Fig. S5. The change in the proportion of dead cells across taxa. The black dot represents the mean change and the black bars represent twice the standard error.
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Fig. S6. Chromatogram summarizing the mass spectrometry profiles of the cell-free supernatant of five taxa at day 1,000. The figure in the top row is the amino acid standard.
The three highest peaks in plots of taxa are internal standards. The concentration of amino acids is below the detection limit in all samples.
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Fig. S7. Molar concentrations of amino acids in cell free supernatant of B. subtilis KBS0812. Each dot and bar represents the mean and twice the standard error for a given
replicate population, respectively. These concentrations are on the order of the blank, despite the fact cell death estimates were on the order of 106 − 107 mL−1 . Targeted
metabolomics was performed as previously described (9).
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Fig. S8. There is a strong linear relationship between Lag time and the shape parameter of the Weibull distribution. Each taxon is represented by a dot. The dashed black line
is the slope of a simple linear regression. The red dotted lines represent the 95% confidence hull. The dashed grey horizontal line indicates a shape parameter value of one,
where the Weibull reduces to an exponential.
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Fig. S9. A scatterplot of iRep and the shape parameter of the Weibull distribution. Values are plotted for all samples with sufficient sequence coverage to estimate iRep
(described in methods). Black dots represent mean values and black lines represent twice the standard error of mean. There is no visible relationship and no the slope of a
mixed effect linear model with random slopes was not significant. The dashed grey horizontal line indicates a shape parameter value of one, where the Weibull reduces to an
exponential.
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Fig. S10. The ultrametric RAxML 16S rRNA phylogenetic tree of the taxa used in this study. Numbers represent bootstrap support values. Outgroup not shown.
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Fig. S11. The survival curves of replicate populations of Bacillus sp. KBS0812 and its ∆spoIIe mutant show that the ability to form protective endospores does not affect
the survival curve over a timescale of 20 days. The solid black and dashed grey lines indicate the fit from the survival function of the Weibull and exponential distributions,
respectively.
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Fig. S12. The site frequency spectra of all taxa that meet our filtering criteria. The dashed black line represents the mean of the mean mutation frequency and the dashed red
line represents the mean of the maximum observed mutation frequency across replicate populations, respectively.
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Fig. S13. Tajima’s D (DT ) values for all taxa with a sufficient number of mutations in at least three replicate populations. The point where the mean number of pairwise
differences is equal to the number of segregating sites in the population is represented by a dashed grey vertical line. The black dot represents the mean DT within a given
taxon and the black bars represent twice the standard error. The asterisk indicates that DT is significantly greater than zero using a right-tailed one-sided t-test given a false
discovery rate of 0.05.
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Fig. S14. There is no clear relationship between dN/dS and DT and measures of demography across taxa. Slopes were not significant for mixed linear models with random
taxon-specific intercepts for seven out of eight relationships. A borderline significant relationship was found between k and d0 · N(0) and DT .
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Fig. S15. Survival curves of the number of non-synonymous mutations observed within a gene, normalized by relative gene length (i.e., multiplicity, m). We find that genes are
significantly more enriched for mutations than expected by chance in all taxa that meet our criteria (SI Appendix; Table 1). The grey line represents the null expectation (eq. 72
from the SI of (25)). The genome-wide net increase in the log-likelihood of an excess of mutations relative to the null model (∆`) and its Benjamini-Hochberg corrected p-value
is included in each sub-plot (eq. 74 from the SI of (25)).
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SI Dataset S1 (weibull_results_clean_species.csv)187

Summary statistics for the mean survival curve results of all taxa. Each column represents the mean value of that variable188

across replicates of a given taxon.189

SI Dataset S2 (total_parallelism.txt)190

Genome-wide parallelism scores for all taxa that acquired at least 50 non-synonymous mutations across all replicates.191

SI Dataset S3 (gene_annotation.txt)192

The RefSeq annotations of all significantly significant genes for all taxa with their respective annotated function.193

SI Dataset S4 (genomes_info.txt)194

Annotation information for all reference genomes assembled for this study.195
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