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SUPPLEMENTAL METHODS 5 

Sequencing and bioinformatics: After extracting nucleic acids, we used DNase (Invitrogen) to 6 

remove DNA from the RNA extractions and then synthesized cDNA with SuperScript III First 7 

Strand Synthesis kit and random hexamer primers (Invitrogen). To amplify the 16S rRNA gene 8 

(DNA) and transcripts (cDNA), we used barcoded V4 primers (515F and 806R) designed for the 9 

Illumina MiSeq platform (Caporaso et al. 2012). We then purified the PCR products with 10 

AMPure XP, quantified DNA concentrations using PicoGreen, and pooled samples at 10 ng per 11 

sample. The resulting libraries were sequenced on an Illumina MiSeq at the Indiana University 12 

Center for Genomic and Bioinformatics Sequencing Facility using 250 × 250 bp paired-end 13 

reads (Reagent Kit v2). Sequences were subsequently processed using the software package 14 

mothur (version 1.41.1) (Schloss et al. 2009). We assembled contigs, removed low quality 15 

sequences (minimum score of 35), aligned sequences to the SILVA Database (version 132) 16 

(Quast et al. 2013), removed chimeras using the VSEARCH algorithm (Rognes et al. 2016), and 17 

created 97% similar operational taxonomic units (OTUs) using the OptiClust algorithm 18 

(Westcott & Schloss 2017), and classified sequences with the RDP taxonomy (Cole et al. 2009). 19 

 20 

Estimating cell abundance: To support inferences about biotic interactions made from relative 21 

abundances and negative frequency dependence, we estimated the annual variability in overall 22 

community density using flow cytometry for the first year 60 weeks of the time series. We 23 
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filtered lake water samples using a 5 µm syringe filter to remove large particles. We stained 1 ml 24 

of the sample with 1 µl of eFluor660 (eBioscience, UK), a fixed viability dye that penetrates 25 

ruptured cell wells and stains dead cells, at room temperature for 30 minutes. After 30 minutes, 26 

cells were fixed with 13.5 µl of 37% formalin. Samples were frozen at -80 ºC. To enumerate 27 

overall cell density, we thawed samples on ice in the dark (to preserve eFluor660 staining), then 28 

transferred each sample to a 15x75 mm clamp cap tube. In the tube, we added two drops of cell 29 

permeable Hoechst 33342 (Chazotte 2011), which stains DNA, 5 µl of 1:1000 cell permeable 30 

Pyronin-y stain, which stains RNA, and 1 µ of a bead standard (final concentration of 106 31 

beads/ml) for cell counting.  32 

We collected 50,000 bead events on the LSR II flow cytometer using the BD FACSDiva 33 

Software (v. 6.1.3) in the Indiana University Flow Cytometry Core Center (samples run by 34 

director of the facility, C. Hassel). Bead events were determined using a size-based threshold 35 

based on SSC (side scatter) and FSC (forward scatter). We analyzed data using R v.4.0.5 (R Core 36 

Team 2020), using the packages “flowCore” (Ellis et al. 2020) and “flowStats” (Hahne et al. 37 

2020). To estimate total community density, we performed a hyperbolic arc-sine transformation 38 

of the channels reading the Hoechst DNA stain and the eFluor660 viability stain. We then 39 

created gates, such that cells which stained positive with Hoechst (fluorescence > 9), but not for 40 

eFluor660 (8 < eFluor fluorescence < 10) were considered potentially live bacteria. We set the 41 

lower thresholds based on the background fluorescence calculated for cell-free controls. The 42 

distribution of Hoechst fluorescence was bimodal because of residual background fluorescence 43 

for Hoechst. We then used the ‘rangeGate’ procedure from the ‘flowStats’ package to select only 44 

the population of events with high fluorescence values for the Hoechst stain (to further remove 45 

low-fluorescence background noise) using an algorithm that split the histogram of fluorescence 46 
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intensity at its lowest point density (typically around fluorescence of 9), then filtered the data to 47 

keep only the higher fluorescence events. We then counted the events in this category as true 48 

cells.  49 

We used bead data to estimate cell density in the community. Because the flow cytometer 50 

stopped after reading 50,000 bead counts, the data is standardized per 50,000 beads. Using the 51 

known concentration of beads (106 beads/ml) and assuming a homogeneous distribution in the 52 

tube (tubes were shaken well before reading), we estimated the number of cells per ml. Cell 53 

density was estimated as observed cell counts per 50,000 beads, multiplied by 106 beads per ml, 54 

to obtain cells per ml. We then visualized estimated cell counts for roughly the first year of 55 

sampling (Fig. S1).  56 

 57 

Differential response to environment: Because temperature was associated with the major axis of 58 

community variation in the RDA and is known to place important constraints on bacterial 59 

metabolism, nutrient uptake, and reproduction, we analyzed whether variation in temperature 60 

may have facilitated temporal niche partitioning. For each of the persistent OTUs, we compared 61 

its relative abundance in the community with the current temperature using linear regression with 62 

a quadratic term to accommodate nonlinear responses to temperature. We then compared 63 

differences among taxa in how their commonness or rarity varied along the observed temperature 64 

gradient (Fig. S5).  65 

 66 

REFERENCES 67 

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. 68 
(2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and 69 
MiSeq platforms. The ISME Journal, 6, 1621–1624. 70 



 4 

Chazotte, B. (2011). Labeling Nuclear DNA with Hoechst 33342. Cold Spring Harb Protoc, 71 
2011, pdb.prot5557. 72 

Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., et al. (2009). The Ribosomal 73 
Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids 74 
Research, 37, 141–145. 75 

Ellis, B., Haaland, P., Hahne, F., Le Meur, N., Gopalakrishnan, N., Spidlen, J., et al. (2020). 76 
flowCore: flowCore: Basic structures for flow cytometry data. R package version 2.2.0. 77 

Hahne, F., Gopalakrishnan, N., Khodabakhshi, A.H., Wong, C.-J. & Lee, K. (2020). flowStats: 78 
Statistical methods for the analysis of flow cytometry data. R package version 4.2.0. 79 
http://www.github.com/RGLab/flowStats. 80 

Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., et al. (2013). The SILVA 81 
ribosomal RNA gene database project: improved data processing and web-based tools. 82 
Nucleic Acids Research, 41, 590–596. 83 

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation 84 
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 85 

Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. (2016). VSEARCH: a versatile open 86 
source tool for metagenomics. PeerJ, 4, e2584–e2584. 87 

Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. (2009). 88 
Introducing mothur: open-source, platform-independent, community-supported software 89 
for describing and comparing microbial communities. Applied and Environmental 90 
Microbiology, 75, 7537–7541. 91 

Westcott, S.L. & Schloss, P.D. (2017). OptiClust, an improved method for assigning amplicon-92 
based sequence data to operational taxonomic units. mSphere, 2, e00073-17. 93 

 94 

  95 



 5 

SUPPLEMENTAL TABLES AND FIGURES 96 

Table S1. Operational taxonomic units (OTUs) that were classified as persistent in the 97 

bacterioplankton community based on being detected in ³80% of the total (i.e., DNA) 98 

community samples. The table is sorted by Julian date of max growth.  99 

OTU Class Max growth rate (d-1) Date of max growth 

Otu00045 Betaproteobacteria 0.622 2014-01-03 

Otu00039 Betaproteobacteria 0.486 2014-02-14 

Otu00067 Betaproteobacteria 0.314 2014-02-14 

Otu00102 Betaproteobacteria 0.442 2015-02-28 

Otu00105 Alphaproteobacteria 0.636 2014-02-28 

Otu00183 unclassified 0.4 2014-02-21 

Otu00065 Sphingobacteriia 0.626 2014-03-21 

Otu00129 Alphaproteobacteria 0.329 2014-03-28 

Otu00012 Betaproteobacteria 0.892 2014-04-18 

Otu00016 Actinobacteria 0.553 2014-04-18 

Otu00017 Actinobacteria 0.79 2015-04-04 

Otu00021 Gammaproteobacteria 0.815 2014-04-18 

Otu00024 Bacteroidetes unclassified 0.644 2015-04-11 

Otu00048 Verrucomicrobiae 0.756 2015-04-11 

Otu00055 Flavobacteriia 0.564 2014-04-18 

Otu00064 Alphaproteobacteria 0.527 2013-04-25 

Otu00148 unclassified 0.534 2013-04-25 

Otu00172 Gammaproteobacteria 0.442 2015-04-11 

Otu00219 Betaproteobacteria 0.52 2014-04-18 
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Otu00250 Actinobacteria 0.329 2014-04-25 

Otu00002 Actinobacteria 0.319 2015-05-03 

Otu00008 Actinobacteria 0.365 2013-05-09 

Otu00014 Actinobacteria 0.41 2015-05-03 

Otu00031 Cytophagia 0.428 2014-05-09 

Otu00049 Actinobacteria 0.445 2014-05-17 

Otu00051 Flavobacteriia 0.689 2013-05-09 

Otu00062 Flavobacteriia 0.665 2013-05-09 

Otu00113 Bacteroidetes unclassified 0.564 2013-05-09 

Otu00116 Betaproteobacteria 0.607 2014-05-09 

Otu00151 Betaproteobacteria 0.495 2013-05-17 

Otu00200 unclassified 0.454 2015-05-23 

Otu00208 Betaproteobacteria 0.564 2014-05-09 

Otu00022 Opitutae 0.771 2013-06-14 

Otu00058 Armatimonadia 0.588 2013-06-21 

Otu00066 Betaproteobacteria 0.623 2013-06-07 

Otu00083 Flavobacteriia 0.773 2015-06-06 

Otu00095 Betaproteobacteria 0.413 2015-06-06 

Otu00098 Betaproteobacteria 0.58 2013-06-14 

Otu00123 Sphingobacteriia 0.495 2014-06-20 

Otu00194 Deltaproteobacteria 0.698 2014-06-13 

Otu00196 Actinobacteria 0.442 2013-06-07 

Otu00294 Alphaproteobacteria 0.465 2013-06-21 

Otu00004 Actinobacteria 0.35 2015-07-11 

Otu00009 Gammaproteobacteria 1.103 2013-07-26 
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Otu00010 Proteobacteria unclassified 0.405 2015-07-11 

Otu00011 Betaproteobacteria 0.754 2015-07-18 

Otu00038 Actinobacteria 0.508 2015-07-11 

Otu00195 Actinobacteria 0.396 2014-07-18 

Otu00292 Alphaproteobacteria 0.495 2015-07-26 

Otu00019 Cytophagia 0.527 2013-08-01 

Otu00020 Betaproteobacteria 0.428 2013-08-01 

Otu00029 Actinobacteria 0.428 2013-08-23 

Otu00036 Alphaproteobacteria 0.527 2013-08-16 

Otu00037 Actinobacteria 0.534 2014-08-29 

Otu00052 Alphaproteobacteria 0.413 2013-08-09 

Otu00073 Betaproteobacteria 0.396 2013-08-01 

Otu00076 Actinobacteria 0.413 2014-08-08 

Otu00087 Betaproteobacteria 0.504 2014-08-23 

Otu00112 Alphaproteobacteria 0.355 2014-08-23 

Otu00226 Opitutae 0.442 2015-08-02 

Otu00026 Betaproteobacteria 0.41 2015-09-02 

Otu00033 Alphaproteobacteria 0.349 2013-09-13 

Otu00005 Sphingobacteriia 0.534 2014-10-04 

Otu00015 Actinobacteria 0.396 2014-10-17 

Otu00034 Alphaproteobacteria 0.343 2014-10-04 

Otu00060 Betaproteobacteria 0.773 2013-10-25 

Otu00082 Bacteroidetes unclassified 0.57 2014-10-04 

Otu00154 Alphaproteobacteria 0.476 2014-10-04 

Otu00158 Gammaproteobacteria 0.684 2013-10-04 
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Otu00192 unclassified 0.23 2014-10-17 

Otu00001 Betaproteobacteria 0.286 2013-11-15 

Otu00007 Betaproteobacteria 0.471 2013-11-15 

Otu00018 Gammaproteobacteria 0.8 2013-11-15 

Otu00047 Betaproteobacteria 0.442 2013-11-15 

Otu00056 Cytophagia 0.587 2013-11-15 

Otu00077 Flavobacteriia 0.585 2014-11-21 

Otu00109 Actinobacteria 0.442 2013-11-15 

Otu00118 Actinobacteria 0.377 2013-11-22 

Otu00177 Proteobacteria unclassified 0.46 2013-11-15 

Otu00198 Betaproteobacteria 0.691 2013-11-15 

Otu00217 Proteobacteria unclassified 0.486 2013-11-22 

 100 
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 102 

Figure S1. Community density remains relatively stable throughout the year. Cell density was 103 

estimated by flow cytometry. Density peaks slightly during the spring warm up, but overall, total 104 

density remains relatively stable.  105 

106 
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 107 

Figure S2. Differential responses of persistent taxa along a temperature gradient. Points indicate 108 

the relative abundances of a random sample of 25 of the 82 persistent OTUs in the active portion 109 

of the community. Fits are linear regression models with quadratic terms to capture nonlinearities 110 

along the temperature gradient. Note that some taxa increase in relative abundance with higher 111 

temperatures, while other taxa increase in relative abundance at lower temperatures. Others 112 

display unimodal responses to temperature. 113 

 114 
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 115 

Figure S3. Negative frequency dependence for the 82 persistent taxa in the active community. 116 

The linear regression lines in this figure are the same as depicted in Fig. S3A.   117 
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 118 

Figure S4. Negative frequency dependence (NFD) in the active portion of the community for the 119 

82 persistent bacterial taxa. (A) Relationship between the rate of change of an OTU and its 120 

relative abundance. Depicted in this graph are simple linear-regression fits for the 82 taxa 121 

individually (data points not shown to reduce clutter). Negative relationships indicate NFD 122 

growth and variation in slopes indicates variation in the strength of NFD. (B) Rare taxa (lower 123 

equilibrium frequencies) exhibit stronger NFD, while common taxa (higher equilibrium 124 

frequency) have weaker NFD. 125 

  126 
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 127 

Figure S5. Comparison of observed number of reactivations to the number of reactivations 128 

expected for the stochastic null model simulations (n = 1000). The deviation between 129 

observations and null distributions were quantitatively compared by calculating a standardized 130 

effect size for each OTU. We plotted standardized effect sizes for each persistent OTU in 131 

relation to its overall relative abundance in the community, and labeled the OTUs with 132 

significantly fewer observed reactivations than expected by chance (i.e., two standard deviations 133 

below the range of expected values for that taxon). 134 

 135 


