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Scaling up and down: movement ecology
for microorganisms
Highlights
Our mechanistic understanding of the
machinery that powers microbial motility
has advanced considerably alongside
mounting evidence from the ecological
literature that dispersal plays a key role
in structuring patterns of microbial
biodiversity.

Despite the parallel developments in
these fields, they have focused largely
on microbial movement at different
scales, hindering the cross-scale integra-
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Movement is critical for the fitness of organisms, both large and small. It dictates
how individuals acquire resources, evade predators, exchange genetic material,
and respond to stressful environments. Movement also influences ecological
and evolutionary dynamics at higher organizational levels, such as populations
and communities. However, the links between individual motility and the pro-
cesses that generate and maintain microbial diversity are poorly understood.
Movement ecology is a framework linking the physiological and behavioral prop-
erties of individuals to movement patterns across scales of space, time, and
biological organization. By synthesizing insights from cell biology, ecology, and
evolution, we expand theory from movement ecology to predict the causes and
consequences of microbial movements.
tion from individual motility behavior
to the dynamics of populations and
communities.

Movement ecology is a recent frame-
work that could provide a means to inte-
grate across these different perspectives
to better understand microbial move-
ment and explicitly identify the funda-
mental features of movement.

Empirical studies using novel tech-
niques have revealed important ways
that microorganisms can sense and
move through different environments,
unlocking the potential to study micro-
bial motility at different scales from a
movement ecology perspective.
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Microbial movements across scales
Movement (see Glossary) is a fundamental aspect of life [1]. Amongmicroorganisms, movement
allows cells to encounter new resources [2], evade predators and parasites [3,4], exchange ge-
netic material [5,6], form complex multicellular biofilms [7,8], and track favorable environmental
conditions [9]. Many different strategies have evolved that allowmicrobes to successfully navigate
their environments. For example, internal energy powers swimmingmotility in aqueous environ-
ments, as well as swarming, twitching, and gliding along surfaces [2,10], while body size, attach-
ment to particles, associations with hosts, and engagement in dormancy can promote passive
movements [11]. Despite detailed knowledge of the strategies andmolecular mechanisms under-
lying movement at the individual level, it remains a challenge to scale these individual-level mech-
anisms up to understand patterns and processes in microbial populations and communities.

Microorganisms are thought to have the highest movement capacities among all of life on earth
[12–14]. However, this perspective is disconnected from the movement of individual cells.
Instead, views on microbial movement are often informed by biogeographic patterns, which re-
sult from a multigenerational sequence of individual reproduction events and cellular movements
[9,15,16]. Consequently, there is a disconnect between themechanistic understanding of individ-
ual movements and the collective dispersal patterns that emerge from individual-level processes
[17]. An integrative perspective on microbial movement must link between individuals and the net
dispersal that emerges from the collective actions of those individuals. Closing this gap requires
integration across scales of space and time, and across different levels of biological organization.

Movement ecology provides a way to resolve the problem of scale mismatch [17,18]. Most
often applied to macro-organisms (i.e., plants and animals), movement ecology emphasizes
four main components governing organismal movement: locomotion (i.e., how organisms
move), the internal state of the organism (i.e., the factors that motivate or allow movement),
navigation capacities (i.e., whether organisms can directionally orient their movements), and the
environmental context (e.g., fluid flows, abiotic stresses, biotic constraints) of movement
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Glossary
Biogeography: the description of
species distributions and the ecological
and evolutionary processes that cause
them to change over space and time.
Colonization: the arrival and
subsequent establishment of a
population in a new habitat.
Community: a collection of multiple
individuals of multiple species in the
same place at the same time.
Dispersal: the one-time translocation
of an organism from location of birth to
location of reproduction.
Dormancy: a reversible state of
reduced metabolic activity that buffers
against stressful environments at the
cost of delayed reproduction.
Energy budget: the allocation of
assimilated energy into various
processes, including reproduction,
cellular maintenance, and movement.
Environmental gradient: a gradual
change in a relevant feature of the
external ecosystem that can potentially
alter the structure and function of
biological entities.
Genome streamlining: the
evolutionary process by which the
genome becomes leaner through the
elimination of redundant or superfluous
genes that are not essential to
maintaining viable populations.
Motility: a broad term for the
movement of an individual
microorganism due to swimming,
gliding, or twitching mechanisms.
Movement: the process by which an
individual organism changes its spatial
location.
Movement ecology: a framework to
integrate the four key components of
movement: locomotion, internal states,
external states, and navigation
capacities.
Population: a collection of multiple
individuals of the same species in a given
location at the same time.
Quorum sensing: the process of
bacterial cell-to-cell signaling that relies
on the production, transmission, and
detection of extracellular signaling
molecules that initiates a collective
response.
Random walk: a movement process
whereby the step distances and turning
angles are independently and randomly
drawn from a distribution, showing no
temporal autocorrelation.
Symbiont: an organism that is
dependent on a host for at least part of
its life cycle with host–symbiont
decisions [17]. Movement ecology proposes that individual movement paths depend on the inter-
play of these components and can be characterized by different movement phases (e.g., random
searching, rest, tracking) that accumulate over the individual’s lifetime (Figure 1). From these fun-
damental components, the collective movements of individuals lead to population-level patterns
of dispersal.

A movement ecology for microorganisms
Building on the four components of movement ecology, we develop a general framework
adapted for microorganisms to understand why microbes move the way they do in different en-
vironments. We consider the traits and life-history features of microorganisms that distinguish
their movement from macro-organisms, such as smaller body size, shorter generation times,
and the propensity for prolonged dormancy and reduced metabolism.

Locomotion – active versus passive movement
A major distinction between movement approaches is whether the microbial cell has the molec-
ular structures to power active locomotion. Active movement can be accomplished through a va-
riety of mechanisms, such as swimming or swarming via flagella [2,9], twitching via pili [19], or
gliding via secretion systems [20,21], which can generate a range of movement patterns [22].
For example, rod-shaped bacteria (e.g., Escherichia coli, Bacillus) can rotate bundles of flagella
to generate thrust through an aqueous environment. Molecular mechanisms can reverse the di-
rection of flagellar motors, causing reorientation of the cell body, and subsequent forward motion
occurs in a new direction [23]. This mixture of runs interspersed with reorientations (i.e., ‘run-and-
tumble’ strategy) is common in swimming bacteria [9]. In contrast, helical cells do not need flagella
and can rotate their bodies through environments due to their corkscrew body shape [24]. On
surfaces, twitching motility relies not on flagella, but instead on the extension, adhesion, and re-
traction of pili, which can reorient cells upon detachment from a surface [19]. Gliding uses a range
of mechanisms to move across slightly drier surfaces [20]. Thesemechanisms affect travel in pro-
foundways. For example, speed varies by orders of magnitude (Box 1), ranging from~1000 μm/s
in Ovobacter propellens, which is powered by 400 flagella [25], to ~1 μm/s in Neisseria
gonorrhoeae, which uses twitching motility (Figure 2) [26]. Some gliding mechanisms are even
slower: Myxococcus xanthus travels at roughly five body lengths per minute [20]. The structural
variation in motility apparatuses likely reflects different costs and benefits that constrain cellular
movements [2,10].

Microorganisms can also move passively through the landscape. Passive movement may occur
instead of, or in addition to, active movement, and could counteract active movements, making
them less energetically efficient. Microbes have evolved a range of morphological structures
that promote passive movement. For example, many microorganisms are capable of long-
range dispersal owing to small body sizes, buoyant structures [27], life-history strategies including
dormancy [28], host- or microbial-associations [29,30], and ballistosporic discharge [31]. Long-
range dispersal can be further aided by the fact that microorganisms suspended in the atmo-
sphere often have mean residence times of around one week [32], which can contribute to
global-scale dispersal when attached to dust particles [33].

Internal organismal state – energy reserves
Movement is affected by the internal state of an individual, which can be influenced by nutrient lim-
itation, viruses, or stressful abiotic conditions. Activemovement is costly and could lead to the de-
pletion of energy stores with implications for survival and growth in new habitats. For example, the
high swimming speeds of O. propellens are powered by rotating the flagellar filaments in excess
of 10 000 rotations per second [22]. Thus, even if the structures for active movement are in place,
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Figure 1. A movement ecology perspective provides a unified approach to studying movement patterns
spanning microorganisms to macro-organisms. (A) This line is a trace of a simulated random walk for the species
Ovobacter propellens (speed = 1000 μm/s), without chemotaxis. The simple process demonstrates important features o
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a cell may be unable to power the machinery due to energetic limitations. Indeed, genomic evi-
dence suggests that motility is often lost during nutrient limitations [34], and laboratory experi-
ments have shown that motility can be especially costly during starvation [9], sometimes
provoking a reduction in swimming cells [35]. In the deep biosphere, extreme energy limitation
has eliminatedmotility in some cases [36]. One reason for this might be because, for slower grow-
ing cells, motility costs make up a larger portion of the cell’s energy budget [9]. Starvation can
also modify cell sizes, and smaller cells may be less energetically efficient at swimming due to
the relationships between nutrient uptake, drag forces, and flagellar motor power requirements
[37]. These energetic costs tend to increase with the viscosity of the environment [38], but
could be alleviated or exacerbated in the face of strong passive movements.

Even passive movements can be shaped by internal organismal states. For example, genome
streamlining and metabolic strategies that reduce energetic costs (e.g., dormancy) are often
correlated with broad spatial distributions of certain microbial taxa [39–41]. This pattern suggests
that energetic traits could be important for promoting passive dispersal across generations,
thereby increasing range size. Metabolic constraints may also limit the environments in which
cells can acquire energy, shortening movement distances in the absence of survival mechanisms
like dormancy. For instance, anaerobic gut-associated taxa are strongly dependent on the host
as a vector, unable to survive oxygenated conditions. This metabolic constraint limits passive
movement capacity, but many gut microorganisms are capable of producing dormant spores
that do not allocate energy to reproduction and survive harsh conditions [42–45]. In environments
that disfavor dormancy, however, complex and costly sporulation pathways, like that of Bacillus
subtilis, are quick to decay [46]. Thus, the internal states of microorganisms (metabolic, genomic,
and energetic) can have implications for both active and passive movement patterns.

Navigation capacities – taxis
Many microorganisms have sensory capacities that allow them to track favorable environmental
conditions through space (i.e., taxis). Like foraging behaviors and sensory cues that guide animal
movements (e.g., sight, smell), taxis allows active movements to be nonrandomly directed along
environmental gradients (e.g., light, chemical concentration, temperature, magnetic fields).
Sensory cues may be the direct targets of bacterial motility (e.g., carbon substrates) or they
may be indirectly associated with favorable environments. The sensory machinery is energetically
costly [9,29], but helps individuals reach reproductively favorable habitats [47], including motile
hosts that emit chemical signals [48]. For example, marine bacteria and archaea exhibit strong
chemotaxis towards phytoplankton-produced organic matter, helping them find resource
hotspots in the open ocean [49].

Taxis may also be a density-dependent mechanism mediated by quorum sensing, which relies
on the production, transmission, and reception of cell–cell signaling molecules. In high-density
environments, such as guts, quorum sensing can leverage themultiple independent search paths
of individual bacteria to find suitable microhabitats, from which they can produce signals that
allow nearby cells to navigate along the signal gradient. For example, the secretion of
autoinducer-2 by E. coli can provide a gradient that other neighboring conspecific cells can follow
movement. The net displacement distance (blue) is much smaller than the total distance traveled (black). This reflects the
deep sinuosity of the random walk. (B) The movements of 15 loggerhead sea turtles (Caretta caretta) in the Mediterranean
Sea. Points indicate the daily location estimate for an individual turtle, with lines connecting each turtle’s path. A switching
state-space model identified different behaviors underlying movement, including foraging (blue points) and transitions
between sites (red points). Compared to microorganisms undergoing random walks, the turtles are navigating a differen
ecosystem, with different locomotive strategies and complex sensory abilities, but these movement trajectories can be
analyzed with similar tools from a movement ecology perspective. Panel B reproduced with permission from [60].
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Box 1. A primer on dispersal kernels

The dispersal kernel is the distribution of movement distances that an individual microorganism is likely to move. The summation
of individual kernels helps to quantify the net population-level movement [77]. This aggregation is important for making connec-
tions with ecological and evolutionary theory developed at higher levels of biological organization. Total distance traveled by an
individual cell is typically much longer than its overall displacement from its starting point per unit time, especially if movement in-
cludes backtracking (i.e., large turning angles) (see Figure 1 in main text). These movement patterns can be categorized as true
dispersal (a net displacement prior to reproduction), migration (back-and-forth movements in a lifetime), station-keeping (move-
ment required to maintain spatial location), and nomadism (wandering movements with no consistent home/destination) [18].
Ecological and evolutionary frameworks have typically focused on the overall net displacement of individuals, ignoring the route
taken [89]. To link with existing theory, we focus on how individual distances traveled scale up to overall net displacement at
the population level.

Individual cells move at a range of speeds, spanning orders of magnitude (e.g., <1–1000 μm s–1) [90]. The population-level
implications of this variation can be seen through heuristic models of individual randomwalks, where the distance traveled
per second is uniformly distributed between 0 and the maximum speed, and the reorientation angle is randomly drawn
from a uniform distribution spanning 0–2π. For populations of 1000 individuals, there was a wide range of distances that
individuals and populations were displaced after a single day of movement (Figure I). These simulations assume unlimited
cellular energy, no rest, no hydrological flow, and no chemotaxis, but nevertheless reveal dispersal kernels with wide
variances, long tails, and means that span roughly four orders of magnitude. These conditions also align with conditions
obtainable in microfluidic devices [54,82]. In general, net distances traveled per day might range from ~1 μm to nearly a
meter (Figure I). The faster the speed, the wider the variance in distance traveled (note the log scale on the x-axis in the
figure). When these values are placed in the context of more general ecological and evolutionary theories, wemight predict
different outcomes for species with low dispersal rates versus those with high dispersal rates.
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Figure I. Movement distributions (dispersal kernels) for microorganisms with different movement speeds.
The distribution of movements in a simulated population of 1000 individual cells undergoing a random walk. For each
taxon presented here, estimates of movement rates were obtained from Table 4-8 in [90]. For each individual in the
population, we simulated 1 day of movement at its estimated speed, then computed the net distance traveled to
estimate the population dispersal kernel for a given day. Higher movement speeds can lead to higher mean distances
traveled, but also wider distributions of individual movements because in a random walk (absent chemotaxis or
prevailing currents), individuals can diverge widely in their directions of movement.
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Figure 2. A comparison of two bacterial approaches to motility. (A) Neisseria gonorrhoeae uses several pili to
undertake twitching motility, resulting in slow movements (~1 μm/s). (B) In contrast, Ovobacter propellens relies on roughly
400 flagella to power its much faster swimming motility (~1000 μm/s). These two organisms move at drastically different
speeds, evidenced by their differential structural investments and the costs to maintain them over evolutionary time. Figure of
N. gonorrhoeae reproduced with permission from [93]. Figure of O. propellens reproduced with permission from [25].
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via chemotaxis [50]. The production of quorum sensing molecules then can synchronize cell
movements, and rapidly reorient individual movement pathways, transitioning from a gradient-
seeking random walk to a directed walk up a signaling gradient. In soils, B. subtilis followed a
gradient of quorum sensing molecules to localize on the tips of plant roots [51]. Taxic behavior
is an important link between individual-level movements and the collective movements of the
population.

Environmental context – physical and biotic factors
Microbes live in environments that vary widely in their fluid properties (e.g., oceans, guts, soils, in-
tracellular). Strong physical environmental flows can quickly overcome the forces of active move-
ment, leading to predominantly planktonic lifestyles guided by passive movement [47]. If fluid
flows displace microbes from their optimal habitats, active machinery could be necessary to
maintain position. Pulsed environments, such as guts, may favor microbial traits like dormancy,
which can promote colonization by improving survival through low-pH environments and be-
tween hosts [42]. The fluidity of the environment can also modify how individuals perceive other
features, such as spatial heterogeneity and chemical gradients.

At a more mechanistic level, the physical medium constrains the types of microbial movement
that can occur [52]. Aqueous environments allow swimming, but active movement cannot
occur without a fluid. In viscous fluids like mucous in the gut, helical cell bodies are particularly
adept at using rotational locomotion [24]. Movement along surfaces requires a thin fluid layer,
such as in swarming, a collective form of motility whereby differentiated phenotypes quickly
Trends in Microbiology, March 2023, Vol. 31, No. 3 247
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expand outward [53]. Swimming can also be modified by hydrodynamic forces associated with
nearby surfaces, even in the absence of pressure or chemical gradients [54]. On surfaces without
sufficient fluid for active motility, movement relies on passive vectors, like wind [11].

Animals can direct the movements of their associated symbionts and free-living microorganisms
throughmore complex forms of connectivity. For example, social behaviors can promote host-to-
host transmission in ways that bypass the environment altogether [55]. But microbes that are hor-
izontally transmitted between hosts must possess traits that allow them to survive both on hosts
and in the environment [56]. Consequently, the environment may retain or eliminate microbial cells
that could potentially colonize new hosts, altering patterns of microbial movement within and
across generations.

Movement ecology: theory and data across scales
Movement ecology is an established framework that may be useful for studying long-standing
challenges in microbiology related to integration across scales. By considering interactions
among the four fundamental components of movement (locomotion, internal conditions, naviga-
tion capacity, and environment), the framework treats motility in a broader ecoevolutionary con-
text, providing a common interface between individual-level motility and processes occurring at
larger scales of space and biological organization [18].

Individual movement is typically recorded as a time series of spatial coordinates or a series of
movement metrics that describe the movement trajectory. The sequences of step lengths
(i.e., the distance traveled per time step) and turning angles (i.e., the change in direction between
successive displacements) provide useful information for understanding phases of movement
[57,58]. For example, organisms may move long distances to search for resources and then re-
main relatively stationary while consuming them. It is possible to fit statistical models, such as hid-
den Markov models (HMMs) or state-space models (SSMs), to detect these different phases in
movement data (e.g., Figure 1B) and predict transitions between them [57,59,60]. Different dis-
tributions of step lengths and turning angles may be associated with each movement phase
and statistical models can relate them to different environmental covariates to predict transition
probabilities [57].

Appropriatemicrobial movement data could be generated, for example, in a microfluidic chamber
[54,61]. These data can be used to fit HMMs or SSMs that identify environmental or physical fea-
tures (e.g., temperature, chemicals) that trigger transitions between movement phases
(e.g., searching vs. uptake in chemotaxis). Parameters can then be compared across microbial
taxa and with data from macro-organisms (see Figure I in Box 2) [62]. Furthermore, because in-
dividual movement often depends on nearby individuals (e.g., via quorum sensing), statistical
models can also incorporate temporal correlations in the turning angles and step lengths
among individuals to understand social aspects of movement behavior [63,64]. By fitting statisti-
cal models to microbial movement data, biologists can more explicitly probe the causes and con-
sequences of different motility strategies by investigating the four components of the movement
ecology framework. Experiments that incorporate multiple individuals or species may be impor-
tant for understanding how interactions among individuals and their environments influence
movement at population and community levels (Box 2).

By recasting population and community movement parameters as distributions of individual
movements (with means and variances), the study of microbial motility can intersect in novel
ways with ecological and evolutionary dynamics [18,65]. A promising outlook is to integrate the
collective motility of microorganisms into existing ecological or evolutionary theory to better
248 Trends in Microbiology, March 2023, Vol. 31, No. 3
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understand howmicrobial movements influence range expansions [66,67], population synchrony
and stability [68–70], as well as community assembly and dynamics [71,72]. A substantial body of
work onmicrobial communities and biogeography has revealed a central role for movement in un-
derstanding spatial patterns of biodiversity alongside biotic and abiotic constraints on species
persistence [73–77]. For example, dispersal must be sufficient for individuals to colonize a suit-
able habitat, but extremely high dispersal can result in species establishing in unfavorable environ-
ments [78,79]. However, few, if any, of these frameworks distinguish between the different types
of microbial motility. Nor is it clear how our knowledge of variance in individual movement prop-
erties can strengthen inferences of the role of movement at population and community levels.

Intraspecific movement heterogeneity may also have important evolutionary implications. Move-
ment can modify rates of gene flow [80], or movement can evolve if it is regulated by traits that
have a heritable genetic component [81]. Novel theory and experiments could shed light on
how different motility strategies arise in particular abiotic and biotic environments. For example,
the evolution of motility strategies may be partly explained by interactions with competing spe-
cies. New tools, such as microfluidic devices [54,82] and dynamic microbial imaging techniques
[61,83], can provide detailed data on microbial movements that can test previously untestable
theoretical predictions [84]. Microfluidic landscapes with varying spatial structure can be
engineered to closely align with metapopulation and metacommunity theories to incorporate dif-
ferent types of movement based on species composition. In turn, as more microbial movement
data become available, ecological and evolutionary theory could take inspiration from the unique
features of microorganisms to understand how their movement diverges from plants and animals.

Aspects of movement, like other ecological and evolutionary processes, are expected to change
across spatial and temporal scales [85]. There are two key components of scale: grain (i.e., the
Box 2. Linking individual to population movement

Links between individual- and population-level movements arise through simple summation or through the emergence of
more complex behaviors (e.g., swarming, biofilm formation, stalk formation). The distributions of step lengths and turning
angles per time in the population are important properties that depend on whether the collective movements of individuals
are unidirectional, migratory, foraging-based/taxic, or stochastic (Figure I). The shapes of these distributions at the popu-
lation level depend on the interactions among individuals and their movement trajectories [65], which may be strongly
affected by movement components such as chemotaxis and both biotic and abiotic environmental factors [91].

To understand the effects of these movement components on population-level movement, we can analyze how move-
ment distributions change with population density. For example, microfluidic devices with dynamic imaging can be used
to track the movements of individual bacteria in highly controlled settings [82]. Inoculating chambers with different bacterial
densities and parameterizing step length and turning angle distributions across a gradient of population size can provide
information on how the distribution of movements (or the dispersal kernel) changes as more individuals are moving and
interacting with one another and the environment. The sensitivity of the distribution to various population-level features
could shed light on the relative importance of biotic interactions versus environmental properties on movement, especially
if experiments are conducted along environmental gradients.

Analyzing movement from individuals to populations depends on the differences in orientation of individual movements.
For example, strong and consistent responses to environmental gradients can entrain populations if all individuals track
the same cues [9], or engage in quorum sensing. If all individuals travel in the same direction and take a direct path, the
dispersal kernel can have reduced variance. Population-level entrainment is also likely to occur with strong environmental
vectors of passive movement. If all individuals get swept up in the same currents, they are more likely to move in the same
direction for similar distances. However, when movement is not governed by sensory processes and the environment is
somewhat static, individual movements can be highly variable in distance and direction. Considerable variation in move-
ment phenotypes among individuals can be detected in microbial populations [92]. This heterogeneity could lead to a
broader, flatter dispersal kernel when scaling up to the population. Characterizing dispersal kernels associated with
different motility strategies and microbial taxa is likely to be informative for understanding the role of movement in different
ecosystems.

Trends in
 Microbiology, March 2023, Vol. 31, No. 3 249

CellPress logo


(A) Elk

(B) Shewanella putrefaciens

TrendsTrends inin MicrobiologyMicrobiology

Figure I. Turning angle distributions provide common currency. (A) The distribution of turning angles for cow elk
(Cervus elaphus) in Elk Island National Park, Alberta. Turning angle distributions differ for different movement phases. In
the ‘Encamped’ phase, turning angles are wider and more broadly distributed, consistent with local foraging in a given
area. In the ‘Exploratory’ phase, turning angles are much narrower, consistent with animals traversing broad stretches
of space with little backtracking. (B) Turning angle distributions for Shewanella putrefaciens. In this figure, the wild-type
strain containing multiple secondary flagellar filaments is contrasted with a knockout strain (ΔflaAB2) that contains only
polar flagella. In effect, the mutant strain can move only via a ‘run-reverse-flick’ strategy, which allows for efficient
movement at 90° turning angles, but strongly reduces the turns at smaller angles that the wild-type strain frequently
uses. Panel A reproduced with permission from [59] and panel B reproduced with permission from [94].
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resolution at which the phenomenon is observed) and extent (i.e., the spatial or temporal range of
observations). Aligning the scale of the research question with the scale of data is critical for de-
tecting the movement process of interest. At fine spatial grains and small extents, individual
movements are more readily detectable and relate to individual interactions and movement deci-
sions that drive ecological and evolutionary processes. Fine-scale studies have shown that spatial
population structure can exhibit dynamic patterning through traveling waves [9] and that
250 Trends in Microbiology, March 2023, Vol. 31, No. 3
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Outstanding questions
What are the typical movement
patterns and distributions of diverse
microbial taxa?

How dependent are microbial
movement distributions on locomotive
machinery, internal states, and external
environments? Do these factors have
generalizable effects on microbial
movements at the individual or
population levels?

How do differences among individuals
in their movement behaviors alter our
understanding of microbial population
dynamics, stability, and functioning?

Can differences among microbial taxa
in their movement strategies influence
patterns of diversity by altering
species interactions, coexistence, and
community-level dynamics?

Does existing theory adequately explain
the evolution of microbial movement
strategies? Or does novel theory need
to be developed to understand
microbial systems?

What are the human implications of
microbial movement? Can we refine
our understanding of the role of
microorganisms in human health,
agriculture, and epidemiology by
focusing on movement distributions?
chemotaxis can lead to rapid expansion of range edges [67]. At coarser grains and broader ex-
tents, individual movements can average out. However, it may be possible to use tracer studies
(e.g., using fluorescently labeled cells) to reveal the shapes of dispersal kernels for different taxa in
different environments [86]. Some taxa may serve as useful biological tracers due to their ability to
form dormant resting stages, enabling quantitative estimates of dispersal rates [87].

Scaling of movement across time may help to explain the origins of spatiotemporal patterns of
biodiversity over longer durations and at coarser resolutions through the processes of evolution-
ary diversification, community succession, and local adaptation. By considering spatial context, it
is also possible to explore how movement relates to broad scale patterns of microbial biogeog-
raphy. For example, estimates of movement from phylogeographic data suggest that microbial
lineages may spread across the globe at rates ranging from about 0.04 km2 year–1 in the terres-
trial subsurface to >1000 km2 year–1 in human-associated taxa [15,16]. These estimates align
well with the isolation of these habitats and demonstrate that genomic signatures of evolutionary
divergence can reveal insight intomicrobial movements over long timescales. Thus, there is much
to be gained at the interface of microbiological studies of motility and ecoevolutionary perspec-
tives on microbial movement [88]. Movement ecology outlines an explicit framework to improve
the transferability across these fields and stimulate important new research.

Concluding remarks
Movement ecology provides a strong foundation for the study of microbial movements. By explic-
itly considering the internal and external states of organisms, their locomotive machinery, and
their sensing abilities, the study of motility can be integrated into existing concepts of movement
from the broader ecological and evolutionary literature. Furthermore, this conceptual integration
can promote the examination of novel questions about the origins, maintenance, and implications
of microbial movements in more complex systems, spanning scales of space, time, and biological
organization (see Outstanding questions). Future work at the intersection of these fields could
focus on several fronts. First, the quantification of movement distributions under different environ-
mental and intracellular contexts. Second, the development of new theory. Third, the empirical
testing of theory through laboratory experiments (e.g., via novel imaging tools), or in larger,
more complex experiments that take advantage of increased detection and monitoring capabili-
ties to track microbial movements in situ.
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