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Abstract 

Along the ri v er–sea contin uum, micr oorganisms ar e dir ectionall y dispersed by w ater flow while being exposed to str ong envir on- 
mental gradients. To compare the two assemb l y mechanisms that may str ongl y and differ entl y influence metacomm unity dynamics, 
namely homogenizing dispersal and heterogeneous selection, we characterized the total (16S rRNA gene) and putati v el y acti v e (16S 
rRN A tr anscript) bacterial communities in the Pearl Ri v er–South China Sea Continuum, during the wet (summer) and dry (winter) 
seasons using high-thr oughput sequencing. Mor eov er, well-defined sampling was conducted by including fr eshw ater, oligohaline, 
mesohaline , polyhaline , and marine habitats. We found that heterogeneous selection exceeded homogenizing dispersal in both the 
total and acti v e fractions of bacterial communities in two seasons. However, homogeneous selection was prevalent (the dominant 
except in active bacterial communities during summer), which was primarily due to the bacterial communities’ tremendous diversity 
(associated with high rarity) and our specific sampling design. In either summer or winter seasons, homogeneous and heterogeneous 
selection showed higher r elati v e importance in total and acti v e comm unities, r especti v el y, impl ying that the acti v e bacteria wer e 
mor e r esponsi v e to envir onmental gr adients than w ere the total bacteria. In summar y, our findings pr ovide insight into the assemb l y 
of bacterial communities in natural ecosystems with high spatial connectivity and environmental heterogeneity. 

Ke yw ords: metacommunity; heterogeneous selection; homogenizing dispersal; metabolic activity; river–sea continuum 
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Introduction 

Micr oor ganisms exhibit diverse and complex community struc- 
tur es acr oss aquatic ecosystems. Although micr oor ganisms can 

now be r a pidl y and accur atel y identified using high-throughput 
sequencing, ecological processes, which refer to the assembly of 
micr obial comm unities r emain complicated, especiall y in flowing 
envir onments wher e individuals ar e str ongl y influenced by cur- 
rents and physical forces (Read et al. 2015 , Savio et al. 2015 , Hen- 
son et al. 2018 , Liu et al. 2018 , Gweon et al. 2021 ). Such conditions 
are common in rivers that are commonly characterized by strong 
envir onmental gr adients. Ther efor e, the micr obial comm unities 
in riv ers ar e ideal models for quantitativ e metacomm unity stud- 
ies focusing on a set of local communities linked by dispersing in- 
dividuals (Leibold et al. 2004 , Vellend 2010 ). The metacommunity 
fr ame w ork allo ws for tests of the r elativ e importance of dispersal 
and selection on assembl y pr ocesses (Stegen et al. 2013 ). Specif- 
icall y, when mov ement is r estricted, dispersal limitation leads to 
compositional variation among sites (Langenheder and Lindström 

2019 ). When movement is relatively unrestricted, high rates of 
dispersal can homogenize compositions among sites (Heino et 
al. 2015 ). Conv ersel y, ecological selection occurs when ther e ar e 
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tness differences between organisms that either constrain (i.e.
omogeneous selection) or promote (i.e. heterogeneous selection) 
urnover in composition among sites with respect to phylogenetic 
elatedness of taxa (Zhou and Ning 2017 ). 

It is particularl y c hallenging to understand the ecological pro-
esses that underpin the bacterial communities involved in com- 
lex biogeochemical processes at river mouths (Raymond and 

auer 2001 ). Many studies have shown that bacterial commu-
ities in river–sea continua change dramatically across space 

Alonso et al. 2010 , Jeffries et al. 2016 , Aguirre et al. 2017 , Sia et
l. 2019 ). Dispersal- and selection-inferred processes may con- 
ribute inv ersel y to bacterial comm unity v ariations in riv er–sea
ontinua (Stadler and del Giorgio 2022 ). In detail, a river–sea con-
inuum can be defined as a r eac h that c har acteristicall y r anges
r om fr eshw ater to seaw ater. Tr ansitions typicall y occur within
 100–200 km distance (Wu and Liu 2018 ), which is a relatively
mall geogr a phical scale giv en that bacteria can easil y disperse
cr oss suc h highl y connected ecosystems (Heino et al. 2015 ). As
 result of high rates of immigration and emigration, dispersal
ay homogenize the bacterial communities (Niño-García et al.

016 , Shen et al. 2018 , Fodelianakis et al. 2019 ). Ho w e v er, riv er–sea
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Figure 1. (A) Map showing the sampling locations in the Pearl River–South China Sea Continuum during the summer (indicated by blue crosses) and 
winter (indicated by red circles) seasons, and (B) the type of habitats (classified according to salinity shown in br ac kets) that each sampling location 
belongs to. Nine of the 11 stations sampled in each season overlap, while the remaining two are differently located. The map was generated using the 
Ocean Data View software ( http://odv.awi.de ). 
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ontinua are also characterized with strong environmental gra-
ients involving variables like salinity (Langenheder et al. 2003 ,
 av er et al. 2018 ), which can efficiently differentiate bacterial
ommunities harboring taxa with distinct niches (Lozupone and
night 2007 , Thompson et al. 2017 ). Heterogeneous selection
an emerge as a result of promoted turnover among bacteria
ith distantly phylogenetic relatedness, and may ov er po w er the

ole of homogenizing dispersal. Although ri ver–sea contin ua are
n important link between terr estrial, fr eshwater, and marine
cosystems (Zutic and Legovic 1987 , Telesh and Khlebovich 2010 ,
enopoulos et al. 2017 ), the interaction of the underlying mecha-
isms that shape bacterial communities remains unclear. 

The r elativ e importance of certain ecological pr ocesses can dif-
er based on the metabolic activity of microbial taxa (Muscarella
t al. 2016 , Wisnoski et al. 2020 ). To gain a compr ehensiv e under-
tanding and account for metabolic states, total and active bac-
erial comm unities ar e incr easingl y being studied together (Jones
nd Lennon 2010 , Campbell et al. 2011 , Lennon and Jones 2011 ,
ampbell and Kirchman 2013 , Richa et al. 2017 , Locey et al. 2020 ).

n some aquatic ecosystems, only a small proportion of the to-
al bacterial community is potentially active, ranging from < 5%
e.g. in oligotrophic open oceans) to > 50% (e.g. in highly produc-
ive estuaries) (del Giorgio and Scarborough 1995 , Smith and del
iorgio 2003 ). As a result, the total and active bacterial communi-

ies exhibit distinct structures. For example, the total community
ay contain slo w-gro wing, dormant, and dead bacteria that can

e tr ansported acr oss str ong envir onmental gr adients (Lennon et
l. 2018 , Nagler et al. 2018 ). Their reduced metabolic state may
mpr ov e colonization success and dampen spatial variability of
omm unity structur e (Carini et al. 2016 ), ther eby r educing the
xpected signature of heterogeneous selection. Conversely, active
ommunities exhibit faster and greater responses to changing en-
ironmental conditions (Hoshino and Matsumoto 2007 , Franzosa
t al. 2015 , De Vrieze et al. 2016 ), and homogeneous selection
hat constr ains comm unity structur e might be negated. Although

any studies have described total and active bacterial communi-
ies concurr entl y, the differ ences in their assembl y mec hanisms
er e onl y compar ed in a small portion of pr e vious studies (Logue
nd Lindström 2010 , Jia et al. 2020 , Locey et al. 2020 , Stadler and
el Giorgio 2022 ). 

Here, we study the bacterial communities in the Pearl River–
outh China Sea Continuum (PSC). According to the Venice Sys-
em for the classification of marine waters (Anonymous 1958 ), the
SC cov ers div erse habitats spanning a r ange of salinities, includ-
ng freshwater ( < 0.5), oligohaline (0.5–5), mesohaline (5–18), poly-
aline (18–30), and marine ( > 30), for a ppr oximate 120 km. Mor e-
v er, the PSC is str ongl y influenced by seasonal river runoff e v ents
Sun et al. 2014 ), which may affect the balance between dispersal-
nd selection-inferr ed pr ocesses (Huber et al. 2020 ). We conducted
urveys along the PSC during both summer (wet season) and win-
er (dry season). At each sampling station, we collected surface
nd bottom samples and c har acterized bacterial comm unities us-
ng high-throughput sequencing of the 16S rRNA genes (DNA)
nd transcripts (RNA). Despite several debatable limitations and
av eats (Blaze wicz et al. 2013 ), it is gener all y accepted that DNA-
ased data r epr esent the total bacterial communities (including
iving, dormant, and dead organisms), whereas RNA-based data
rimarily account for putati vely acti ve bacteria (Kirchman 2016 ).
e quantified the r elativ e importance of five ecological processes:

eterogeneous selection, dispersal limitation, undominated frac-
ion, homogenizing dispersal, and homogeneous selection, using
 two-step fr ame work (Stegen et al. 2013 , Stegen et al. 2016 ). We
ompared homogenizing dispersal versus heterogeneous selec-
ion in each of the four sets of bacterial communities (i.e. total and
ctive bacteria in summer and winter seasons), and tested how
omogeneous and heterogeneous selection (in each season) var-

ed in total versus active communities . T his study provides novel
nsights into the assembly of highly connected bacterial commu-
ities along strong environmental gradients. 

aterials and methods 

ield sampling of bacterial communities 

ater samples for molecular analyses were taken from the PSC
n 2014 during both the wet summer (i.e. between May 13 and 15)
nd dry winter (between December 29 and 31) (Fig. 1 A). In each

http://odv.awi.de
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season, a total of 22 samples were collected from the surface (at 
0.5 m depth) and bottom (5–21 m in the summer and 4.5–14 m in 

the winter; i.e. at 0.5–2 m above the sediment) layers across a tran- 
sect (11 samples per layer). During summer and winter, 9 of the 
11 stations were repeatedly surveyed, while the other two stations 
had a shift in geogr a phical locations between two seasons. Con- 
sidering context dependency in metacommunity studies (Heino 
et al. 2012 ), our PSC sampling design cov er ed sequential fr esh- 
water, oligohaline , mesohaline , polyhaline , and marine habitats 
(according to salinity therein). After pre-filtering 100–800 ml wa- 
ter through an 80- μm mesh, bacterial cells were collected using 
0.2- μm pol ycarbonate membr anes (Millipor e, Carrigtwohill, Cork,
Ireland). After immersing the filters in RNA later solution (Ambion,
Austin, TX, USA), they wer e immediatel y fr ozen in liquid nitrogen 

before being stored at −80 ◦C until molecular analyses. 

Environmental distance calculation 

To determine environmental contexts across the transect, we in- 
cluded a series of abiotic and biotic environmental variables, in- 
cluding temper atur e, salinity, c hlor ophyll a , NH 4 , NO 2 , NO 3 , PO 4 ,
suspended particulate matter, particulate organic carbon, partic- 
ulate nitrogen, and cell numbers of heter otr ophic bacteria, Syne- 
chococcus , and pigmented picoeukaryotes, which were analyzed as 
described pr e viousl y (W u and Liu 2018 ). Pearson’ s correlations be- 
tween envir onmental v ariables wer e anal yzed and visualized via 
heatmaps. 

To determine environmental distances between sampling sites, 
the values of each environmental variable were standardized with 

a mean of 0 and variance of 1, and the environmental distances 
were then calculated as the Euclidean distance between sites . T his 
transformation enabled the linking of ecological processes (esti- 
mated as below) with environmental contexts (and hence, to a 
holistic envir onmental perspectiv e) r ather than to a single vari- 
able . T he relationship between environmental and geographical 
distances was e v aluated using Mantel test. 

Library construction and sequence processing 

DN A/RN A extraction and cDN A synthesis pr ocedur es hav e been 

pr e viousl y described in detail (Wu and Liu 2018 ). Barcoded 

primers 515F (5 ′ -GTGCCAGCMGCCGCGGTAA-3 ′ ) and 806R (5 ′ - 
GGA CTA CHV GGGTWTCTAAT-3 ′ ) (Ca por aso et al. 2011 ) wer e used 

to amplify the V4 region of the 16S rRNA (gene), based on a dual- 
index str ategy. Pol ymer ase c hain r eaction (PCR) mixtur es of 20 μl 
contained 1 × PCR buffer, 1.5 mM MgCl 2 , 0.2 mM dNTP mix, 0.5 μM 

each of primer, 1 U Invitrogen Platinum Taq DNA polymerase (Life 
Technologies, Carlsbad, CA, USA), and DN A/cDN A templates ( ∼1–
10 ng). PCR was performed as follows: 94 ◦C for 3 min, followed by 
30 cycles at 94 ◦C for 45 s, 50 ◦C for 60 s, and 72 ◦C for 90 s, with
a final extension step at 72 ◦C for 10 min. For each sample, trip- 
licate PCR products were pooled and sequenced on a HiSeq 2500 
platform (Illumina, San Diego, CA, USA), generating 2 × 250 bp 

pair ed-end r eads. 
The Quantitative Insights Into Microbial Ecology (QIIME v. 1.9.1) 

pipeline was used to process the sequences (Caporaso et al. 2010 ).
Using the default parameters , o verlapping paired-end reads were 
merged using SeqPrep ( https:// github.com/ jstjohn/ SeqPrep ). The 
merged sequences were then filtered using the following criteria: 
1) Phred scores < 25; 2) homopolymers > 6; 3) with any mismatch 

in the primers; 4) with any error in the barcodes; 5) containing 
ambiguous bases; 6) too short ( < 270 bp) or too long ( > 320 bp).
The filtered sequences were grouped into operational taxonomic 
units (OTUs) using Sumaclust (Mercier et al. 2013 ) at 99% simi- 
arity (Koeppel and Wu 2014 , Louca et al. 2016 ). After removing
ingletons and doubletons , ChimeraSla y er w as used to identify
nd r emov e c himer as based on r epr esentativ e sequences (i.e. the
ost abundant sequence in each OTU) (Haas et al. 2011 ). These

 epr esentativ e sequences wer e annotated a gainst the SILVA 119
atabase (Quast et al. 2013 ) using BLAST ( E value = 10 −6 ), and
hose affiliated with ar chaea, eukary otes, c hlor oplasts, and mito-
 hondria wer e r emov ed fr om the O TU table . T he r emaining r epr e-
entativ e sequences wer e aligned with MAFFT 7 (Katoh and Stan-
ley 2013 ) using the FFT-large-NS-2 method. After the removal of
olumns that sho w ed gaps in > 90% of the positions, the resulting
lignment was used to construct a phylogenetic tree with FastTree
Price et al. 2009 ). 

For further analysis, the bacterial communities (full OTU ta- 
les) were normalized to the minimum sequencing depth (i.e. 5557
equences) associated with 100 bootstr a p r esampling runs . T he
umber of observed OTUs (OTU richness) was calculated using 
he v egan pac ka ge (Oksanen et al. 2018 ) in R v. 3.5.0 (R Core Team
018 ). The relationship between OTU richness (based on an av-
r a ge of 100 bootstr a ps) and distance to the uppermost end (i.e.
tation HM01) was tested using linear r egr ession or generalized
d diti ve model in R. The rarefied bacterial communities were also
sed to generate the weighted UniFrac dissimilarity, which was 
urther plotted using principal coordinate analysis (PCoA) using 
he vegan package. 

uantitati v e estimate of assembly processes 

o quantitativ el y examine dispersal- and selection-inferred eco- 
ogical processes, we used the null model approach (Stegen et
l. 2016 ) separ atel y for the four sets (total and active; summer
nd winter) of bacterial communities. First, we tested the phylo-
enetic signals using Mantel corr elogr ams to determine the re-
ationship between phylogenetic distance and niche differences 
inferr ed fr om all envir onmental v ariables) among OTUs prior to
onducting null model analyses (Stegen et al. 2013 , Dini-Andreote
t al. 2015 ). Only O TUs (in the full O TU tables) with an occu-
ancy (i.e. number of sites occupied) of > 3 were included when
esting the phylogenetic signals because an extr emel y low occu-
ancy might bias the detection of niche specialization. Then, the
hylogenetic turnover in the (r ar efied) bacterial comm unities was
uantified based on β-mean nearest taxon distance ( βMNTD) us-

ng the picante pac ka ge (K embel et al. 2010 ). To infer the r ela-
ive importance of different ecological processes, we calculated 

he pairwise β-nearest taxon index ( βNTI), which accounted for
he difference between the observed βMNTD and the mean of the
ull distribution normalized by its standard deviation (999 ran- 
omizations). βNTI values of ≤−2 and ≥+ 2 indicate significantly

ess than and more than the expected phylogenetic turnov er, r e-
pectiv el y (i.e. homogeneous and heterogeneous selection, respec- 
iv el y). In cases where | βNTI | < 2, we calculated the Raup–Crick

etric based on Bray–Curtis dissimilarities (RC bray ) (Stegen et al.
013 ). P airwise RC bray v alues of > + 0.95, < −0.95, and | RC bray | < 0.95
ccounted for the r elativ e contributions of dispersal limitation,
omogenizing dispersal, and the undominated fraction (mainly 

ndicating drift under weak dispersal- and selection-inferred pro- 
esses), r espectiv el y (Dini-Andr eote et al. 2015 , Stegen et al. 2015 ,
hou and Ning 2017 ). The bootstr a p anal ysis for 100 r eplicates was

ncluded in the null model analyses. 
As described abo ve , when determining a driving ecological pro-

ess for pairwise bacterial communities, the number of OTUs 
corresponding to the nodes of the phylogenetic tree used for
he calculation of βMNTD) and their r elativ e abundances are

https://github.com/jstjohn/SeqPrep
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mportant. This is because these two comm unity c har acteristics
an essentially affect the values of βNTI and RC bray based on
99 randomizations. To test the effect of OTU numbers and rela-
ive abundances, we further calculated ecological processes shap-
ng the sub-communities composed of the most abundant 1000
 TUs . T he resulting difference in ecological processes (compared

o those of whole bacterial communities) supports the effect of
iversity (i.e . O TU numbers) and rarity (i.e. relative abundances of
TUs) on null model analyses. 

abitat preference of OTUs 

o identify OTUs that ar e specificall y associated with different
abitats (i.e . freshwater, oligohaline , mesohaline , polyhaline , and
arine environments), the analysis of indicator value (IndVal) was

erformed based on r elativ e abundances (in the full OTU tables)
sing the indicspecies pac ka ge (De Cáceres and Legendre 2009 ).
 he O TUs with a pr efer ence of a particular habitat wer e r ecog-
ized as having significant ( P < 0.05) IndVal estimations (ranging

rom 0 to 1) through 999 permutations (Hauptmann et al. 2016 ).
TUs showing a r elativ e abundance of < 0.01% in all the samples
er e r emov ed befor e IndVal anal yses because their r arities biased

he prediction of habitat preference. 

ta tistical anal ysis 

o visualize comm unity c har acteristics, r ank–abundance and rar-
faction curves were plotted using the vegan package with the
adfit and rarefy functions , respectively. Moreo ver , the impor -
ance of each environmental factor in promoting beta diversity
w eighted UniF rac dissimilarity) w as individually tested using per-
 utational m ultiv ariate anal ysis of v ariance (PERMANOVA, 999

ermutations) with the adonis2 function in the vegan package.
he PERMANOVA was also used to examine the difference be-
ween the total and active bacterial communities (999 permu-
ations). To assess the community assembly processes along the
SC, we r egr essed pairwise βNTI v alues (using an av er a ge of 100
ootstr a ps) a gainst envir onmental distances (Kumari et al. 2015 ,
tegen et al. 2016 , Feng et al. 2018 , Zhang et al. 2018 ). 

esults 

ydrographic condition 

her e wer e a total of 49 and 37 significant corr elation r elation-
hips of the 13 environmental variables in summer and winter,
 espectiv el y ( Supplementary Fig. S1 ). As a typical hydr ogr a phic
ontext in this river–sea continuum, salinity sho w ed significantly
egativ e corr elations with nutrients (NH 4 , NO 2 , NO 3 , and PO 4 ),
articulate organic carbon, and particulate nitrogen in both sea-
ons . En vironmental distances among sites significantly increased
ith geogr a phical distances based on Mantel tests (summer: r =
.77, P < 0.001; winter: r = 0.76, P < 0.001). Mor eov er, a total of
 and 0 samples located in the freshwater habitat in summer
nd winter, r espectiv el y (Fig. 1 B), indicating that this transect was
ore influenced b y freshw ater in the wet season due to more river

unoffs. 

omm unity c haracteristic 

he sum of OTUs detected in summer and winter were 45 594
nd 40 328, r espectiv el y, a consider able percenta ge of whic h was
hared (summer , 43%; winter , 49%) between total and active bac-
erial communities ( Supplementary Fig. S2A and B ). The rank–
bundance curves displayed a long tail ( Supplementary Fig. S2C
nd D ), and the r ar efaction curv es of individual bacterial commu-
ities gener all y did not r eac h an asymptote ( Supplementary Fig.
2E ). 

Total bacterial communities sho w ed significantly ( P <

.05) higher OTU richness than their activ e counter parts
 Supplementary Fig. S3 ). Mor eov er, OTUs in total bacterial
ommunities had higher habitat occupancies than those in
ctiv e fr actions, when compar ed based on a given relative abun-
ance ( Supplementary Fig. S4 ). Remarkably, the most abundant
0 OTUs in each dataset, except an OTU in active bacterial
ommunities in summer (OTU49), were detected in all samples
 Supplementary Fig. S5 ). 

The PCoA ordination r e v ealed that total and active bacterial
omm unities wer e significantl y differ ent ( P < 0.001), both of whic h
hifted along salinity gradients (Fig. 2 ). Furthermore, salinity was
he only environmental factor that was significantly ( P < 0.05)
elated to community dissimilarities in all four sets of bacterial
ommunities ( Supplementary Table S1 ). 

ommunity assembly 

he null model analyses, supported by the phylogenetic signal
articularl y pr onounced among OTUs with short phylogenetic
istances ( Supplementary Fig. S6 ), sho w ed that ecological pro-
esses on av er a ge comprised 38.2% homogeneous selection, 8.5%
omogenizing dispersal, 21.8% undominated fraction (indicating
eak dispersal- and selection-inferred processes), 15% dispersal

imitation, and 16.5% heterogeneous selection (Fig. 3 ). In detail,
eterogeneous selection exceeded homogenizing dispersal in all
our sets of bacterial communities, in spite of a slightly different
roportion in the active bacterial communities in winter (hetero-
eneous selection, 11.3%; homogenizing dispersal, 10%). 

In either summer or winter seasons, homogeneous and het-
rogeneous selection sho w ed higher proportions in total and ac-
iv e bacterial comm unities, r espectiv el y (Fig. 3 ). Notabl y, ecolog-
cal processes shifted with changes in environmental distance
Fig. 4 ), c har acterized by significant linear r egr ession r elationships
 P < 0.001) between environmental distances and βNTI values
 Supplementary Fig. S7 ). βMNTD also increased with increasing
nvironmental distances ( Supplementary Fig. S8 ). 

The assembly of the sub-communities of the most abundant
000 OTUs was on av er a ge comprised of 0.04% homogeneous se-
ection, 9.8% homogenizing dispersal, 23.8% undominated frac-
ion, 21.7% dispersal limitation, and 44.6% heterogeneous selec-
ion ( Supplementary Fig. S9 ). Mor eov er, heter ogeneous selection
as the highest except in the total bacterial communities in win-

er showing an undominated fraction of 39.3% (heterogeneous se-
ection = 31.5%). 

In addition, accompanied with the difference in ecological pro-
esses between total and active bacterial communities (Fig. 3 ), the
ormer sho w ed less OTUs with habitat pr efer ence than the latter
n both summer (total, 63; active, 323) and winter (total, 149; ac-
ive, 178) (Fig. 5 ). 

iscussion 

ur study found that heterogeneous selection exceeded homog-
nizing dispersal in shaping bacterial communities in the PSC,
mpl ying that envir onmental gr adients ar e mor e important than
eogr a phic connections. In each season, homogeneous and het-
rogeneous selection sho w ed higher contributions in total and
ctive bacterial communities, respectively, supporting that the
etabolic activity makes a difference in bacterial community as-

embly. 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
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Figure 2. PCoA plots based on weighted UniFrac dissimilarities during (A) summer and (B) winter associated with changes in salinity, which are 
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collected at each season are indicated by different lines and symbols, respectively. Each point represents the average derived from 100 bootstraps . T he 
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Ecological process shifting in the PSC 

Ecological processes shaping bacterial communities mainly oc- 
curr ed under differ ent envir onmental distances in the PSC (Fig. 4 
and Supplementary Fig. S7 ). We divide the environmental dis- 
tances into three levels for ease of inter pr etation: small (mainl y 
showing homogeneous selection and homogenizing dispersal), 
moder ate (mainl y showing undominated fr action), and lar ge 
(mainly showing dispersal limitation and heterogeneous selec- 
tion). Specificall y, under small envir onmental distances (accom- 
panied by small geogr a phical distances), the passiv e dispersal of 
bacteria can be efficiently facilitated (Heino et al. 2015 ). Ho w e v er,
homogenizing dispersal has to compete against homogeneous se- 
lection in this scenario (Souffreau et al. 2014 ). Homogeneous se- 
lection was pr e v alent (Fig. 3 ) based on estimations in the first step 

of the null model anal ysis, whic h ther efor e weakens the role of 
homogenizing dispersal determined in the second step. 

In contr ast, the lar ge envir onmental distances act as strong se- 
lective forces for bacterial taxa with extr emel y distinct e volution- 
ary histories showing scarce freshwater-marine transitions (Loga- 
es et al. 2009 , Newton et al. 2011 , Herlemann et al. 2016 , P av er et
l. 2018 ). For example, selectiv e pr essur es suc h as salinity-r elated
ortality (P ainc haud et al. 1995 ) can efficientl y differ entiate bac-

erial communities (Fig. 2 ). Moreover, distinct trends arose at the
TU le v el in freshwater- and seawater-like habitats with rela-

ive abundances of the most abundant OTUs peaking at differ-
nt locations across the transect ( Supplementary Fig. S5 ). These
ifferential patterns under large environmental distances can be 
artly attributable to heterogeneous selection primarily responsi- 
le for the large phylogenetic turnover between bacterial commu- 
ities ( Supplementary Fig. S8 ). Alternativ el y, dispersal limitation
merged (Fig. 4 and Supplementary Fig. S7 ) because the majority
f bacterial individuals are unable to disperse across strong envi-
 onmental gr adients . T her efor e, our r esults support that dispersal
imitation can arise not onl y fr om geogr a phical barriers but also
hr ough inter actions with envir onmental heter ogeneities (Adler
t al. 2007 ). 

The undominated fraction was common among sites with 

oder ate envir onmental distances (Fig. 4 and Supplementary Fig.
7 ). On the one hand, sites with moderate environmental dis-
ances are linked via water flow, which can greatly reduce dis-
ersal limitation but may not be strong enough to generate ho-
ogenizing dispersal. On the other hand, selective forces such 

s changing salinity (Lozupone and Knight 2007 ) under moder- 
te environmental distances can lar gel y r educe homogeneous se-
ection, but may not be strong enough to generate heterogeneous 
election. Most bacteria fr om fr eshwater ar e str essed when tr ans-
orted to downstream stations, and may appear to be randomly
lter ed in r a pidl y c hanging envir onments (i.e. by drift). Ther efor e,
he occurrence of undominated fraction is responsible for the sce-
ario in which no single process inferred from either dispersal or
election is dominant (Zhou and Ning 2017 ). 

In our bootstr a pped r esults ( n = 100), the assembl y of the
ame community pair (i.e. dots sharing an x-axis, Supplementary 
ig. S7 ) could be attributed to different ecological processes (i.e.
n different colors). To some degree, this is consistent with the
dea of reconciling dispersal- and selection-based perspectives in 

etacommunity ecology (Gravel et al. 2006 ); that is, dispersal and
election can be jointl y r esponsible for differences between each

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae146#supplementary-data
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air of bacterial comm unities, despite onl y one ecological process
ecognized in null model analyses. Alternatively, rarefaction is a
 andom pr ocess that can cause instabilities in null model anal-
ses (Ma and Tu 2022 ). T hat is , r ar efying the lar gest sample of
9 963 sequences into 5557 sequences (i.e. minimum sequencing
epth) may result in some compositional instability among the
ubsampled communities, influencing the ecological processes in
he subsequent analyses . Nonetheless , we suggest that including
 bootstr a p step with r epeatedl y subsampling (Sc hloss 2024 ) can
et more accurate quantifications of ecological processes. 

re v alence of homogeneous selection 

ur results sho w ed that homogeneous selection can emerge in
cosystems with strong environmental gradients, consistent with
e v er al r ecent studies with similar observ ations (Wang et al. 2020 ,
u et al. 2021 , Urv o y et al. 2022 , Blais et al. 2024 ). Mor eov er,

ur study expands the pr e v alence of homogeneous selection that
as been observed in the oligotrophic South P acific Gyr e (Allen
t al. 2020 ), hydr ologicall y connected riv ers (Gr aham et al. 2017 ,
ai et al. 2019 ), glacier-fed streams (Fodelianakis et al. 2022 ), and
roglacial floodplain streams (Brandani et al. 2023 ). 

A fe w c har acteristics r elated to bacterial comm unities can pri-
arily enhance the strength of homogeneous selection. First, the

acterial communities in the PSC are tremendously diverse in
art because they r eceiv ed alloc hthonous inputs of micr oor gan-

sms from soil and sediments, as well as a mix of freshwater and
arine taxa (Crump et al. 2012 ). The PSC had a large number

f OTUs during summer (total, 41 582; active, 23 611) and winter
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(total, 34 309; active, 25 790). Meanwhile, both total and active bac- 
terial communities exhibited a high degree of rarity (indicated 

by the long tails in the r ank–abundance curv es, Supplementary 
Fig. S2C and D ), which is a common property in bacterial com- 
munities (Pedrós-Alió 2012 ). Second, sites with small environ- 
mental distances may share some OTUs with high r elativ e abun- 
dances (for con venience , simply designated as abundant OTUs).
Taking the most abundant 10 OTUs for example, they commonly 
sho w ed comparable relative abundances between neighboring 
sites ( Supplementary Fig. S5 ). As a result, the phylogenetic dis- 
tances betw een tw o bacterial communities (quantified b y the ob- 
served βMNTD) under small environmental distances were rela- 
tiv el y low ( Supplementary Fig. S8 ) because this metric is deter- 
mined by the phylogenetic positions and r elativ e abundances of 
O TUs . Mor e importantl y, the null expectation for pairwise com- 
munity distances is derived by randomizing OTUs across the phy- 
logeny and recalculating βMNTD 999 times (Stegen et al. 2012 ),
and thus the observed βMNTD values may be much lo w er than 

the null expectation based on tremendous diversity associated 

with high r arity. A r esulting high degree of deviation of βMNTD 

from the null expectation (i.e. βNTI ≤ −2) is a sign of homoge- 
neous selection. 

When focusing on sub-communities composed of the most 
abundant 1000 OTUs (i.e. lo w ering the diversity and rarity), we 
found that homogeneous selection was significantly negated with 

contributions a ppr oximatel y equal to 0 ( Supplementary Fig. S9 ).
Similar to our examination regarding diversity associated with 

r arity, a r ecent study conducted in inshor e w aters sho w ed the 
dominance of non-selection processes in shaping bacterial sub- 
communities of the most abundant 500 OTUs (Han et al. 2022 ).
This is because both diversity and rarity are intensively lo w ered 

in null modeling, leading to a low degr ee of de viation of βMNTD 

from the null expectation (i.e. | βNTI | < 2). Another recent study 
sho w ed that the r elativ e importance of homogeneous selection 

incr eases with incr easing similarity cutoffs for grouping OTUs 
(Quiroga et al. 2022 ). This is primarily due to the fact that using a 
higher similarity cutoff (i.e. a higher phylogenetic resolution) can 

lar gel y incr ease both div ersity (i.e . ha ving an expanded phyloge- 
netic tree when calculating βMNTD) and rarity (i.e. lo w ering the 
sequence number per OTU) for a given dataset. In addition, the 
sharing of abundant OTUs between sites (as mentioned above) 
benefits from our gradient-type sampling design (including fresh- 
water, oligohaline, mesohaline, polyhaline, and marine habitats). 
Given a coarser sampling, e.g. by only sampling the two ends of 
the PSC (i.e. HM01 and ZJ09), the selection would be mainly het- 
er ogeneous r ather than homogeneous ( Supplementary Fig. S7 ).
This is consistent with the notion that community assembly is 
scale-dependent (Chase 2014 , Ladau and Eloe-Fadrosh 2019 , Lan- 
genheder and Lindstr öm 2019 ). Ther efor e, we suggest that the 
pr e v alence of homogeneous selection in this study is primarily 
attributable to the bacterial communities’ tremendous diversity 
(associated with high rarity) and our specific sampling design. 

Total versus active bacterial communities 

As expected, homogeneous and heterogeneous selection in each 

season were more important in total and active bacterial com- 
m unities, r espectiv el y (Fig. 3 ), consistent with that active bacte- 
ria are more responsive to environmental gradients than are the 
total bacteria (De Vrieze et al. 2016 ). This is supported by the 
observation that active bacterial communities had more OTUs 
showing habitat pr efer ences than total bacterial comm unities 
(Fig. 5 ). Mor eov er, OTUs in the total communities exhibited con- 
istently higher occupancies than those in the active fractions 
 Supplementary Fig. S4 ), also implying that the former could be
ess sensitive to environmental gradients by inhabiting a wider 
 ariety of nic hes. Notabl y, the higher occupancies of OTUs in to-
al bacterial communities may primarily result from the inclusion
f dead members, because dead bacteria can potentially persist in
abitats r anging fr om fr eshwater to marine . T his inter pr etation is

n line with a study demonstrating that marine bacteria can even
e r ecruited fr om fr eshw ater sour ces in DN A-inferr ed comm uni-
ies (Comte et al. 2014 ). 

Ho w e v er, when inter pr eting the differ ences in comm unity as-
embly, it should be noted that active bacterial communities are
ot a simple subset of total communities . For example , a signif-

cant proportion of OTUs was found only in the active commu-
ities (summer = 8.8%, winter = 14.9%) ( Supplementary Fig. S2A
nd B ), and se v en activ e comm unities had higher OTU ric hness
han their total counterparts ( Supplementary Fig. S3 ). The OTUs
ound exclusiv el y in activ e comm unities could be extr emel y r ar e
axa from the rare biosphere (Sogin et al. 2006 ). The detection limi-
ation in sequencing methodology contributes to this discrepancy 
ecause DNA-based data might lose some r ar e taxa that were
olel y r ecov er ed in RNA-based data (and vice ver sa ). Alternati v el y,
hese OTUs could have been derived from RNA that survives out-
ide the organismal environment (Cristescu 2019 ). Moreover, ex- 
mining the assembly of either total or active bacterial communi-
ies is complicated and influenced by a variety of factors. For ex-
mple, it is well known that both rDNA (Stoddard et al. 2015 ) and
RN A (Kir chman 2016 ) copy numbers vary greatly among bacte-
ial taxa, with rRN A cop y numbers in particular varying by sev-
ral orders of magnitude for marine bacterial strains at various
etabolic stages (Fegatella et al. 1998 ). As a result, when compar-

ng the assembly of total and active bacterial communities, their
ke wed comm unity structur es ar e a significant source of biased
nter pr etations (Lavrinienk o et al. 2021 ). 
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onclusions 

ur stud y mak es infer ences about how highl y connected bacterial
omm unities ar e assembled along str ong envir onmental gr adi-
nts (Fig. 6 ). Specifically, homogeneous selection and homogeniz-
ng dispersal occur primarily in small environmental distances;
he undominated fraction mainly emerges in moderate environ-

ental distances and mostly indicates drift; dispersal limitation
nd heterogeneous selection occur primarily in large environmen-
al distances. In the PSC, heterogeneous selection exceeds homog-
nizing dispersal in all four sets of bacterial communities, and
omogeneous and heterogeneous selection (in each season) are
ore important in total and putatively active bacterial commu-

ities, r espectiv el y. Mor eov er, our study r e v eals that calculating
cological processes can be heavily influenced by a few commu-
ity c har acteristics (e.g. div ersity and r arity). This suggests that
hen inter pr eting the ecological processes, the phylogenetic and
r oportional pr operties of a metacomm unity should be car efull y
onsidered. In summary, this study emphasizes the importance of
isentangling community assembly mechanisms to understand
icr obial biogeogr a phy in natur al ecosystems. 
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